Algorithme LLLL’algorithme LLL, des initiales de A. Lenstra, H. Lenstra et L. Lovász, est un algorithme de réduction de réseau qui s'exécute en temps polynomial. PrésentationL'algorithme LLL procède à une réduction de base de réseau. Il prend en entrée un nombre d de vecteurs de base d'un réseau, tels que ces vecteurs soient de dimension n et de norme inférieure à B, et retourne en sortie une base de réseau LLL-réduite, c'est-à-dire presque orthogonale, en temps . Pseudo-codeL'algorithme LLL repose sur l'algorithme de réduction faible de bases, qui permet de rendre une base presque orthogonale.
Entrée : Une base Sortie : Une base réduite issue de LLL(B): B = ReducFaible(B) *On fait Gram-Schmidt* Pour i=1 à n : Pour j= 1 à i-1 : Si B est réduite retourne B Sinon echanger(,) retourne LLL(B) ApplicationsÀ l'origine, les applications consistaient en la production d'un algorithme de factorisation des polynômes à coefficients rationnels en produits de polynômes irréductibles, ainsi qu'en la résolution des problèmes d'optimisation linéaire avec solutions entières et dimensions fixes. D'autres applications ont été découvertes en cryptographie[1], notamment en cryptographie à clé publique, par exemple avec RSA, les cryptosystèmes basés sur le problème du sac à dos et NTRUEncrypt. En particulier l'algorithme LLL a rendu inefficaces tous les cryptosystèmes utilisant le problème du sac à dos[2]. Il sert également dans le cas des réseaux euclidiens. Notes et références(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Lenstra–Lenstra–Lovász lattice basis reduction algorithm » (voir la liste des auteurs).
Bibliographie
|