Si busca la raíz enésima de un número, vea Función raíz.
En matemática, se conoce como raíz de un polinomio o cero de una función (definida sobre un cierto cuerpo algebraico) f(x) a todo elemento x perteneciente al dominio de dicha función tal que se cumpla:
Dado el caso de que tanto el dominio como la imagen de la función sean los números reales (denominadas funciones reales) entonces los puntos en los que el gráfico corta al eje de las abscisas es una interpretación gráfica de las raíces de dicha función.
El teorema fundamental del álgebra determina que todo polinomio en una variable compleja y de grado n tiene n raíces (contando sus multiplicidades). Aun así, Las raíces de los polinomios reales no son necesariamente reales; algunas de ellas, o incluso todas, pueden ser complejas.
Una función trascendente como por ejemplo posee una infinidad de raíces, concretamente cualquier es raíz de esa función. En cambio la función no se anula nunca sobre los números complejos.
Dada una función real o compleja el número de raíces es siempre numerable, pudiendo ser cero, número finito o un número infinito numerable.
El teorema fundamental del álgebra afirma que cualquier polinomio de grado n sobre tiene a lo sumo n raíces diferentes, y si se cuenta la multiplicidad de cada raíz entonces puede afirmarse que existen exactamente n raíces.
La función dada por no tienen ninguna raíz ya que no se anula nunca.
Las funciones reales y tienen un número infinito numerable de raíces.