Partición de un conjuntoUna partición de un conjunto A está formada por los subconjuntos A1, A2, A3, ..., An, los cuales deben cumplir:
A1 A2 A3 ... An = A
Esta división se representa mediante una colección o familia de subconjuntos de dicho conjunto que lo recubren. El concepto de partición está ligado al de relación de equivalencia: toda relación de equivalencia sobre un conjunto define una partición de , y viceversa. Cada elemento de la partición corresponde a una clase de equivalencia de la relación Ejemplo: Dado el conjunto A = {1, 2, 3} se define su partición como: A1 = {1} ⋃ {2} ⋃ {3} A2 = {1,2} ⋃ {3} A3 = {1} ⋃ {2,3} A4 = {1,3} ⋃ {2} A5 = {1, 2, 3} Número de particionesEl número de particiones posibles para un conjunto finito solo depende de su cardinal n, y se llama el número de Bell Bn. Los primeros números de Bell son B0 = 1, B1 = 1, B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, ... Referencias
Véase también |
Portal di Ensiklopedia Dunia