Número altamente compuesto Gráfica del número de divisores d(n). Las barras verdes indican los números altamente compuestos: n = 1, 2, 4, 6, 12, 24, 36, 48, 60.
Un número altamente compuesto (o anti-primo) es un entero positivo con más divisores que cualquier entero positivo más pequeño. El término fue acuñado por Ramanujan (1915). Aun así, Jean-Pierre Kahane ha sugerido que el concepto se remonta a Platón , quien puso en 5040 el número ideal de ciudadanos en una ciudad porque 5040 tiene más divisores que otros números más pequeños.[ 1]
El concepto relacionado de número compuesto en gran parte se refiere a un entero positivo que tiene al menos tantos divisores como cualquier entero positivo más pequeño.
Ejemplos
Los primeros 38 números altamente compuestos están listados en la tabla de abajo (sucesión A002182 en OEIS ).
Orden
NAC
n
Factorización en primos
Exponentes primos
Factores primos
d(n)
Factorizaciónprimorial
1
1
0
1
2*
2
2
{\displaystyle 2}
1
1
2
2
{\displaystyle 2}
3
4
2
2
{\displaystyle 2^{2}}
2
2
3
2
2
{\displaystyle 2^{2}}
4*
6
2
⋅
3
{\displaystyle 2\cdot 3}
1,1
2
4
6
{\displaystyle 6}
5*
12
2
2
⋅
3
{\displaystyle 2^{2}\cdot 3}
2,1
3
6
2
⋅
6
{\displaystyle 2\cdot 6}
6
24
2
3
⋅
3
{\displaystyle 2^{3}\cdot 3}
3,1
4
8
2
2
⋅
6
{\displaystyle 2^{2}\cdot 6}
7
36
2
2
⋅
3
2
{\displaystyle 2^{2}\cdot 3^{2}}
2,2
4
9
6
2
{\displaystyle 6^{2}}
8
48
2
4
⋅
3
{\displaystyle 2^{4}\cdot 3}
4,1
5
10
2
3
⋅
6
{\displaystyle 2^{3}\cdot 6}
9*
60
2
2
⋅
3
⋅
5
{\displaystyle 2^{2}\cdot 3\cdot 5}
2,1,1
4
12
2
⋅
30
{\displaystyle 2\cdot 30}
10*
120
2
3
⋅
3
⋅
5
{\displaystyle 2^{3}\cdot 3\cdot 5}
3,1,1
5
16
2
2
⋅
30
{\displaystyle 2^{2}\cdot 30}
11
180
2
2
⋅
3
2
⋅
5
{\displaystyle 2^{2}\cdot 3^{2}\cdot 5}
2,2,1
5
18
6
⋅
30
{\displaystyle 6\cdot 30}
12
240
2
4
⋅
3
⋅
5
{\displaystyle 2^{4}\cdot 3\cdot 5}
4,1,1
6
20
2
3
⋅
30
{\displaystyle 2^{3}\cdot 30}
13*
360
2
3
⋅
3
2
⋅
5
{\displaystyle 2^{3}\cdot 3^{2}\cdot 5}
3,2,1
6
24
2
⋅
6
⋅
30
{\displaystyle 2\cdot 6\cdot 30}
14
720
2
4
⋅
3
2
⋅
5
{\displaystyle 2^{4}\cdot 3^{2}\cdot 5}
4,2,1
7
30
2
2
⋅
6
⋅
30
{\displaystyle 2^{2}\cdot 6\cdot 30}
15
840
2
3
⋅
3
⋅
5
⋅
7
{\displaystyle 2^{3}\cdot 3\cdot 5\cdot 7}
3,1,1,1
6
32
2
2
⋅
210
{\displaystyle 2^{2}\cdot 210}
16
1260
2
2
⋅
3
2
⋅
5
⋅
7
{\displaystyle 2^{2}\cdot 3^{2}\cdot 5\cdot 7}
2,2,1,1
6
36
6
⋅
210
{\displaystyle 6\cdot 210}
17
1680
2
4
⋅
3
⋅
5
⋅
7
{\displaystyle 2^{4}\cdot 3\cdot 5\cdot 7}
4,1,1,1
7
40
2
3
⋅
210
{\displaystyle 2^{3}\cdot 210}
18*
2520
2
3
⋅
3
2
⋅
5
⋅
7
{\displaystyle 2^{3}\cdot 3^{2}\cdot 5\cdot 7}
3,2,1,1
7
48
2
⋅
6
⋅
210
{\displaystyle 2\cdot 6\cdot 210}
19*
5040
2
4
⋅
3
2
⋅
5
⋅
7
{\displaystyle 2^{4}\cdot 3^{2}\cdot 5\cdot 7}
4,2,1,1
8
60
2
2
⋅
6
⋅
210
{\displaystyle 2^{2}\cdot 6\cdot 210}
20
7560
2
3
⋅
3
3
⋅
5
⋅
7
{\displaystyle 2^{3}\cdot 3^{3}\cdot 5\cdot 7}
3,3,1,1
8
64
6
2
⋅
210
{\displaystyle 6^{2}\cdot 210}
21
10080
2
5
⋅
3
2
⋅
5
⋅
7
{\displaystyle 2^{5}\cdot 3^{2}\cdot 5\cdot 7}
5,2,1,1
9
72
2
3
⋅
6
⋅
210
{\displaystyle 2^{3}\cdot 6\cdot 210}
22
15120
2
4
⋅
3
3
⋅
5
⋅
7
{\displaystyle 2^{4}\cdot 3^{3}\cdot 5\cdot 7}
4,3,1,1
9
80
2
⋅
6
2
⋅
210
{\displaystyle 2\cdot 6^{2}\cdot 210}
23
20160
2
6
⋅
3
2
⋅
5
⋅
7
{\displaystyle 2^{6}\cdot 3^{2}\cdot 5\cdot 7}
6,2,1,1
10
84
2
4
⋅
6
⋅
210
{\displaystyle 2^{4}\cdot 6\cdot 210}
24
25200
2
4
⋅
3
2
⋅
5
2
⋅
7
{\displaystyle 2^{4}\cdot 3^{2}\cdot 5^{2}\cdot 7}
4,2,2,1
9
90
2
2
⋅
30
⋅
210
{\displaystyle 2^{2}\cdot 30\cdot 210}
25
27720
2
3
⋅
3
2
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{3}\cdot 3^{2}\cdot 5\cdot 7\cdot 11}
3,2,1,1,1
8
96
2
⋅
6
⋅
2310
{\displaystyle 2\cdot 6\cdot 2310}
26
45360
2
4
⋅
3
4
⋅
5
⋅
7
{\displaystyle 2^{4}\cdot 3^{4}\cdot 5\cdot 7}
4,4,1,1
10
100
6
3
⋅
210
{\displaystyle 6^{3}\cdot 210}
27
50400
2
5
⋅
3
2
⋅
5
2
⋅
7
{\displaystyle 2^{5}\cdot 3^{2}\cdot 5^{2}\cdot 7}
5,2,2,1
10
108
2
3
⋅
30
⋅
210
{\displaystyle 2^{3}\cdot 30\cdot 210}
28*
55440
2
4
⋅
3
2
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{4}\cdot 3^{2}\cdot 5\cdot 7\cdot 11}
4,2,1,1,1
9
120
2
2
⋅
6
⋅
2310
{\displaystyle 2^{2}\cdot 6\cdot 2310}
29
83160
2
3
⋅
3
3
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{3}\cdot 3^{3}\cdot 5\cdot 7\cdot 11}
3,3,1,1,1
9
128
6
2
⋅
2310
{\displaystyle 6^{2}\cdot 2310}
30
110880
2
5
⋅
3
2
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{5}\cdot 3^{2}\cdot 5\cdot 7\cdot 11}
5,2,1,1,1
10
144
2
3
⋅
6
⋅
2310
{\displaystyle 2^{3}\cdot 6\cdot 2310}
31
166320
2
4
⋅
3
3
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{4}\cdot 3^{3}\cdot 5\cdot 7\cdot 11}
4,3,1,1,1
10
160
2
⋅
6
2
⋅
2310
{\displaystyle 2\cdot 6^{2}\cdot 2310}
32
221760
2
6
⋅
3
2
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{6}\cdot 3^{2}\cdot 5\cdot 7\cdot 11}
6,2,1,1,1
11
168
2
4
⋅
6
⋅
2310
{\displaystyle 2^{4}\cdot 6\cdot 2310}
33
277200
2
4
⋅
3
2
⋅
5
2
⋅
7
⋅
11
{\displaystyle 2^{4}\cdot 3^{2}\cdot 5^{2}\cdot 7\cdot 11}
4,2,2,1,1
10
180
2
2
⋅
30
⋅
2310
{\displaystyle 2^{2}\cdot 30\cdot 2310}
34
332640
2
5
⋅
3
3
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{5}\cdot 3^{3}\cdot 5\cdot 7\cdot 11}
5,3,1,1,1
11
192
2
2
⋅
6
2
⋅
2310
{\displaystyle 2^{2}\cdot 6^{2}\cdot 2310}
35
498960
2
4
⋅
3
4
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{4}\cdot 3^{4}\cdot 5\cdot 7\cdot 11}
4,4,1,1,1
11
200
6
3
⋅
2310
{\displaystyle 6^{3}\cdot 2310}
36
554400
2
5
⋅
3
2
⋅
5
2
⋅
7
⋅
11
{\displaystyle 2^{5}\cdot 3^{2}\cdot 5^{2}\cdot 7\cdot 11}
5,2,2,1,1
11
216
2
3
⋅
30
⋅
2310
{\displaystyle 2^{3}\cdot 30\cdot 2310}
37
665280
2
6
⋅
3
3
⋅
5
⋅
7
⋅
11
{\displaystyle 2^{6}\cdot 3^{3}\cdot 5\cdot 7\cdot 11}
6,3,1,1,1
12
224
2
3
⋅
6
2
⋅
2310
{\displaystyle 2^{3}\cdot 6^{2}\cdot 2310}
38*
720720
2
4
⋅
3
2
⋅
5
⋅
7
⋅
11
⋅
13
{\displaystyle 2^{4}\cdot 3^{2}\cdot 5\cdot 7\cdot 11\cdot 13}
4,2,1,1,1,1
10
240
2
2
⋅
6
⋅
30030
{\displaystyle 2^{2}\cdot 6\cdot 30030}
La tabla de abajo muestra todos los divisores de uno de estos números.
El número altamente compuesto: 10080 = (2 × 2 × 2 × 2 × 2) × (3 × 3) × 5 × 7
1×10080
2 × 5040
3 × 3360
4 × 2520
5 × 2016
6 × 1680
7× 1440
8 × 1260
9 × 1120
10 × 1008
12 × 840
14 × 720
15× 672
16 × 630
18 × 560
20 × 504
21 × 480
24 × 420
28× 360
30 × 336
32 × 315
35 × 288
36 × 280
40 × 252
42× 240
45 × 224
48 × 210
56 × 180
60 × 168
63 × 160
70× 144
72 × 140
80 × 126
84 × 120
90 × 112
96 × 105
Nota : los números en negrita son a su vez altamente compuestos.
Sólo el vigésimo número altamente compuesto 7560 (= 3 × 2520) está ausente.10080 es también número 7-liso (sucesión A002473 en OEIS ) .
El número altamente compuesto 15,000 se encuentra en el sitio web de Achim Flammenkamp . Es el producto de 230 primos:
a
0
14
a
1
9
a
2
6
a
3
4
a
4
4
a
5
3
a
6
3
a
7
3
a
8
2
a
9
2
a
10
2
a
11
2
a
12
2
a
13
2
a
14
2
a
15
2
a
16
2
a
17
2
a
18
2
a
19
a
20
a
21
⋯
a
229
,
{\displaystyle a_{0}^{14}a_{1}^{9}a_{2}^{6}a_{3}^{4}a_{4}^{4}a_{5}^{3}a_{6}^{3}a_{7}^{3}a_{8}^{2}a_{9}^{2}a_{10}^{2}a_{11}^{2}a_{12}^{2}a_{13}^{2}a_{14}^{2}a_{15}^{2}a_{16}^{2}a_{17}^{2}a_{18}^{2}a_{19}a_{20}a_{21}\cdots a_{229},}
donde
a
n
{\displaystyle a_{n}}
es la secuencia de números primos sucesivos, y todos los términos omitidos (
a
22
{\displaystyle a_{22}}
a
a
228
{\displaystyle a_{228}}
) son factores con exponente igual a 1 (es decir, el número es
2
14
×
3
9
×
5
6
×
⋯
×
1451
{\displaystyle 2^{14}\times 3^{9}\times 5^{6}\times \cdots \times 1451}
).[ 2]
Véase también
Referencias
↑ Kahane, Jean-Pierre (February 2015), «Bernoulli convolutions and self-similar measures after Erdős: A personal hors d'øeuvre», Bulletin of the American Mathematical Society 62 (2): 136-140 ..
↑ Flammenkamp, Achim, Highly Composite Numbers ..