Divisibilidad infinita (probabilidad)En la teoría de la probabilidad, se llaman funciones de distribución infinitamente divisibles a las funciones de distribución que satisfacen una extensión de la siguiente propiedad de la distribución normal: si X es una distribución normal de media y varianza y n es un entero positivo, entonces donde Xi son variables aleatorias normales de media y varianza . Estas distribuciones aparecen de manera natural en diversos contextos como en el estudio de los límites de distribuciones.[1] El concepto de divisibilidad infinita fue introducido en 1929 por Bruno de Finetti. DefiniciónFormalmente, una distribución de probabilidad F sobre la recta real es infinitamente divisible cuando para toda variable aleatoria X con dicha distribución y cada entero positivo n, existen n variables aleatorias i.i.d. X1, ..., Xn cuya suma tiene una distribución igual a la de X. EjemplosSon infinitamente divisibles las distribuciones de: distribución de Poisson, distribución binomial negativa o de Pascal, distribución exponencial, distribución geométrica, distribución gamma, distribución normal, distribución de Cauchy y todos los otros miembros de la familia de distribuciones estables. Sin embargo, no lo son la distribución uniforme y la distribución binomial.[2] La distribución t de Student es infinítamente divisible, mientras que la distribución de la recíproca de una variable aleatoria con distribución t de Student, no lo es.[3] AplicacionesLas distribuciones infinitamente divisibles aparecen en generalizaziones del teorema central del límite. También están relacionadas con los procesos de Lévy. Véase tambiénReferencias
Bibliografía
|
Portal di Ensiklopedia Dunia