Vibrating-sample magnetometerA vibrating-sample magnetometer (VSM) (also referred to as a Foner magnetometer) is a scientific instrument that measures magnetic properties based on Faraday’s Law of Induction. Simon Foner at MIT Lincoln Laboratory invented VSM in 1955 and reported it in 1959.[1] Also it was mentioned by G.W. Van Oosterhout[2] and by P.J Flanders in 1956.[3] A sample is first placed in a constant magnetic field and if the sample is magnetic it will align its magnetization with the external field. The magnetic dipole moment of the sample creates a magnetic field that changes as a function of time as the sample is moved up and down. This is typically done through the use of a piezoelectric material. The alternating magnetic field induces an electric field in the pickup coils of the VSM.[4] The current is proportional to the magnetization of the sample - the greater the induced current, the greater the magnetization. As a result, typically a hysteresis curve will be recorded[5] and from there the magnetic properties of the sample can be deduced. The idea of vibrating sample came from D. O. Smith's[6] vibrating-coil magnetometer. Typical VSM overviewParts of a typical VSM setup
Sample Operating Procedure:[4]
Conditions for VSM to be effective
Importance of pick-up coilsThese allow the VSM to maximize the induced signal, reduce the noise, give a wide saddle point, minimize the volume in between the sample and electromagnet to achieve a more uniform magnetic field at the sample space.[5] The configuration of the coils can vary depending on the type of material being studied.[5] Relation to PhysicsThe VSM relies on Faraday's law of induction, with the detection of the emf given by ,[7] where N is the number of wire turns, A is the area, and the angle between the normal of the coil and the B field. However, N and A are often unnecessary if the VSM is properly calibrated.[7] By varying the strength of the electromagnet through computer software, the external field is sweeped from high to low and back to high.[7] Typically this is automated through a computer process and a cycle of data is printed out. The electromagnet is typically attached to a rotating base[7] so as to allow the measurements be taken as a function of angle. The external field is applied parallel to the sample length[7] and the aforementioned cycle prints out a hysteresis loop. Then using known magnetization of the calibration material and wire volume the high field voltage signal can be converted into emu units - useful for analysis.[7] Advantages and DisadvantagesThe precision and accuracy of VSM's are quite high even among other magnetometers and can be on the order of ~ emu.[5] VSM's further allow for a sample to be tested at varying angles with respect to its magnetization letting researchers minimize the effects of external influences.[8] However, VSM's are not well suited for determining the magnetization loop due to the demagnetizing effects incurred by the sample.[8] VSM's further suffer from temperature dependence and cannot be used on fragile samples that cannot undergo acceleration (from the vibration).[5][7][8] References
See also |
Portal di Ensiklopedia Dunia