This enzyme belongs to the family of oxidoreductases, specifically those acting on a sulfur group of donors with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is trypanothione:NADP+ oxidoreductase. Other names in common use include trypanothione reductase, and NADPH2:trypanothione oxidoreductase. It employs one cofactor, FAD.
^Pandey RK, Verma P, Sharma D, Bhatt TK, Sundar S, Prajapati VK (2016). "High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania". Biomedicine & Pharmacotherapy. 83: 141–152. doi:10.1016/j.biopha.2016.06.010. PMID27470561.
^Pandey RK, Kumbhar BV, Sundar S, Kunwar A, Prajapati VK (2017). "Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase". Journal of Receptors and Signal Transduction. 37 (1): 60–70. doi:10.3109/10799893.2016.1171344. PMID27147242. S2CID36383056.
Shames SL, Fairlamb AH, Cerami A, Walsh CT (1986). "Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide-containing flavoprotein reductases". Biochemistry. 25 (12): 3519–26. doi:10.1021/bi00360a007. PMID3718941.
Cunningham ML, Fairlamb AH (1995). "Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials". Eur. J. Biochem. 230 (2): 460–8. doi:10.1111/j.1432-1033.1995.tb20583.x (inactive 8 January 2025). PMID7607216.{{cite journal}}: CS1 maint: DOI inactive as of January 2025 (link)
Stump B, Kaiser M, Brun R, Krauth-Siegel RL, Diederich F (2007). "Betraying the Parasites Redox System: Diaryl Sulfide-Based Inhibitors of Trypanothione Reductase: Subversive Substrates and Antitrypanosomal Properties". ChemMedChem. 2 (12): 1708–12. doi:10.1002/cmdc.200700172. PMID17918760. S2CID31754415.