The truncated dodecahedron is constructed from a regular dodecahedron by cutting all of its vertices off, a process known as truncation.[1] Alternatively, the truncated dodecahedron can be constructed by expansion: pushing away the edges of a regular dodecahedron, forming the pentagonal faces into decagonal faces, as well as the vertices into triangles.[2] Therefore, it has 32 faces, 90 edges, and 60 vertices.[3]
The truncated dodecahedron may also be constructed by using Cartesian coordinates. With an edge length centered at the origin, they are all even permutations of
where is the golden ratio.[4]
Properties
The surface area and the volume of a truncated dodecahedron of edge length are:[3]
The dihedral angle of a truncated dodecahedron between two regular dodecahedral faces is 116.57°, and that between triangle-to-dodecahedron is 142.62°.[5]
The truncated dodecahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex.[6] It has the same symmetry as the regular icosahedron, the icosahedral symmetry.[7] The polygonal faces that meet for every vertex are one equilateral triangle and two regular decagon, and the vertex figure of a truncated dodecahedron is . The dual of a truncated dodecahedron is triakis icosahedron, a Catalan solid,[8] which shares the same symmetry as the truncated dodecahedron.[9]
The truncated dodecahedron is non-chiral, meaning it is congruent to its mirror image.[7]
^ abcBerman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR0290245. See in particular page 336.