Pentagon

Pentagon
A cyclic pentagon
Edges and vertices5

In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle'[1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.

A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.

Regular pentagons

Regular pentagon
A regular pentagon
TypeRegular polygon
Edges and vertices5
Schläfli symbol{5}
Coxeter–Dynkin diagrams
Symmetry groupDihedral (D5), order 2×5
Internal angle (degrees)108°
PropertiesConvex, cyclic, equilateral, isogonal, isotoxal
Dual polygonSelf
Side (), circumradius (), inscribed circle radius (), height (), width/diagonal ()

A regular pentagon has Schläfli symbol {5} and interior angles of 108°.

A regular pentagon has five lines of reflectional symmetry, and rotational symmetry of order 5 (through 72°, 144°, 216° and 288°). The diagonals of a convex regular pentagon are in the golden ratio to its sides. Given its side length its height (distance from one side to the opposite vertex), width (distance between two farthest separated points, which equals the diagonal length ) and circumradius are given by:

The area of a convex regular pentagon with side length is given by

If the circumradius of a regular pentagon is given, its edge length is found by the expression

and its area is

since the area of the circumscribed circle is the regular pentagon fills approximately 0.7568 of its circumscribed circle.

Derivation of the area formula

The area of any regular polygon is:

where P is the perimeter of the polygon, and r is the inradius (equivalently the apothem). Substituting the regular pentagon's values for P and r gives the formula

with side length t.

Inradius

Similar to every regular convex polygon, the regular convex pentagon has an inscribed circle. The apothem, which is the radius r of the inscribed circle, of a regular pentagon is related to the side length t by

Chords from the circumscribed circle to the vertices

Like every regular convex polygon, the regular convex pentagon has a circumscribed circle. For a regular pentagon with successive vertices A, B, C, D, E, if P is any point on the circumcircle between points B and C, then PA + PD = PB + PC + PE.

Point in plane

For an arbitrary point in the plane of a regular pentagon with circumradius , whose distances to the centroid of the regular pentagon and its five vertices are and respectively, we have[2]

If are the distances from the vertices of a regular pentagon to any point on its circumcircle, then[2]

Geometrical constructions

The regular pentagon is constructible with compass and straightedge, as 5 is a Fermat prime. A variety of methods are known for constructing a regular pentagon. Some are discussed below.

Richmond's method

One method to construct a regular pentagon in a given circle is described by Richmond[3] and further discussed in Cromwell's Polyhedra.[4]

The top panel shows the construction used in Richmond's method to create the side of the inscribed pentagon. The circle defining the pentagon has unit radius. Its center is located at point C and a midpoint M is marked halfway along its radius. This point is joined to the periphery vertically above the center at point D. Angle CMD is bisected, and the bisector intersects the vertical axis at point Q. A horizontal line through Q intersects the circle at point P, and chord PD is the required side of the inscribed pentagon.

To determine the length of this side, the two right triangles DCM and QCM are depicted below the circle. Using Pythagoras' theorem and two sides, the hypotenuse of the larger triangle is found as . Side h of the smaller triangle then is found using the half-angle formula:

where cosine and sine of ϕ are known from the larger triangle. The result is:

If DP is truly the side of a regular pentagon, , so DP = 2 cos(54°), QD = DP cos(54°) = 2cos2(54°), and CQ = 1 − 2cos2(54°), which equals −cos(108°) by the cosine double angle formula. This is the cosine of 72°, which equals as desired.

Carlyle circles

Method using Carlyle circles

The Carlyle circle was invented as a geometric method to find the roots of a quadratic equation.[5] This methodology leads to a procedure for constructing a regular pentagon. The steps are as follows:[6]

  1. Draw a circle in which to inscribe the pentagon and mark the center point O.
  2. Draw a horizontal line through the center of the circle. Mark the left intersection with the circle as point B.
  3. Construct a vertical line through the center. Mark one intersection with the circle as point A.
  4. Construct the point M as the midpoint of O and B.
  5. Draw a circle centered at M through the point A. Mark its intersection with the horizontal line (inside the original circle) as the point W and its intersection outside the circle as the point V.
  6. Draw a circle of radius OA and center W. It intersects the original circle at two of the vertices of the pentagon.
  7. Draw a circle of radius OA and center V. It intersects the original circle at two of the vertices of the pentagon.
  8. The fifth vertex is the rightmost intersection of the horizontal line with the original circle.

Steps 6–8 are equivalent to the following version, shown in the animation:

6a. Construct point F as the midpoint of O and W.
7a. Construct a vertical line through F. It intersects the original circle at two of the vertices of the pentagon. The third vertex is the rightmost intersection of the horizontal line with the original circle.
8a. Construct the other two vertices using the compass and the length of the vertex found in step 7a.

Euclid's method

Euclid's method for pentagon at a given circle, using the golden triangle, animation 1 min 39 s

A regular pentagon is constructible using a compass and straightedge, either by inscribing one in a given circle or constructing one on a given edge. This process was described by Euclid in his Elements circa 300 BC.[7][8]

Physical construction methods

Overhand knot of a paper strip
  • A regular pentagon may be created from just a strip of paper by tying an overhand knot into the strip and carefully flattening the knot by pulling the ends of the paper strip. Folding one of the ends back over the pentagon will reveal a pentagram when backlit.[9]
  • Construct a regular hexagon on stiff paper or card. Crease along the three diameters between opposite vertices. Cut from one vertex to the center to make an equilateral triangular flap. Fix this flap underneath its neighbor to make a pentagonal pyramid. The base of the pyramid is a regular pentagon.

Symmetry

Symmetries of a regular pentagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center.

The regular pentagon has Dih5 symmetry, order 10. Since 5 is a prime number there is one subgroup with dihedral symmetry: Dih1, and 2 cyclic group symmetries: Z5, and Z1.

These 4 symmetries can be seen in 4 distinct symmetries on the pentagon. John Conway labels these by a letter and group order.[10] Full symmetry of the regular form is r10 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), and i when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as g for their central gyration orders.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g5 subgroup has no degrees of freedom but can be seen as directed edges.

Regular pentagram

A pentagram or pentangle is a regular star pentagon. Its Schläfli symbol is {5/2}. Its sides form the diagonals of a regular convex pentagon – in this arrangement the sides of the two pentagons are in the golden ratio.

Equilateral pentagons

Equilateral pentagon built with four equal circles disposed in a chain.

An equilateral pentagon is a polygon with five sides of equal length. However, its five internal angles can take a range of sets of values, thus permitting it to form a family of pentagons. In contrast, the regular pentagon is unique up to similarity, because it is equilateral and it is equiangular (its five angles are equal).

Cyclic pentagons

A cyclic pentagon is one for which a circle called the circumcircle goes through all five vertices. The regular pentagon is an example of a cyclic pentagon. The area of a cyclic pentagon, whether regular or not, can be expressed as one fourth the square root of one of the roots of a septic equation whose coefficients are functions of the sides of the pentagon.[11][12][13]

There exist cyclic pentagons with rational sides and rational area; these are called Robbins pentagons. It has been proven that the diagonals of a Robbins pentagon must be either all rational or all irrational, and it is conjectured that all the diagonals must be rational.[14]

General convex pentagons

For all convex pentagons with sides and diagonals , the following inequality holds:[15]: p.75, #1854 

.

Pentagons in tiling

The best-known packing of equal-sized regular pentagons on a plane is a double lattice structure which covers 92.131% of the plane.

A regular pentagon cannot appear in any tiling of regular polygons. First, to prove a pentagon cannot form a regular tiling (one in which all faces are congruent, thus requiring that all the polygons be pentagons), observe that 360° / 108° = 313 (where 108° Is the interior angle), which is not a whole number; hence there exists no integer number of pentagons sharing a single vertex and leaving no gaps between them. More difficult is proving a pentagon cannot be in any edge-to-edge tiling made by regular polygons:

The maximum known packing density of a regular pentagon is , achieved by the double lattice packing shown. In a preprint released in 2016, Thomas Hales and Wöden Kusner announced a proof that this double lattice packing of the regular pentagon (known as the "pentagonal ice-ray" Chinese lattice design, dating from around 1900) has the optimal density among all packings of regular pentagons in the plane.[16]

There are no combinations of regular polygons with 4 or more meeting at a vertex that contain a pentagon. For combinations with 3, if 3 polygons meet at a vertex and one has an odd number of sides, the other 2 must be congruent. The reason for this is that the polygons that touch the edges of the pentagon must alternate around the pentagon, which is impossible because of the pentagon's odd number of sides. For the pentagon, this results in a polygon whose angles are all (360 − 108) / 2 = 126°. To find the number of sides this polygon has, the result is 360 / (180 − 126) = 623, which is not a whole number. Therefore, a pentagon cannot appear in any tiling made by regular polygons.

There are 15 classes of pentagons that can monohedrally tile the plane. None of the pentagons have any symmetry in general, although some have special cases with mirror symmetry.

15 monohedral pentagonal tiles
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

Pentagons in polyhedra

Ih Th Td O I D5d
Dodecahedron Pyritohedron Tetartoid Pentagonal icositetrahedron Pentagonal hexecontahedron Truncated trapezohedron

Pentagons in nature

Plants

Animals

Minerals

Other examples

See also

In-line notes and references

  1. ^ "pentagon, adj. and n." OED Online. Oxford University Press, June 2014. Web. 17 August 2014.
  2. ^ a b Meskhishvili, Mamuka (2020). "Cyclic Averages of Regular Polygons and Platonic Solids". Communications in Mathematics and Applications. 11: 335–355.
  3. ^ Richmond, Herbert W. (1893). "A Construction for a Regular Polygon of Seventeen Sides". The Quarterly Journal of Pure and Applied Mathematics. 26: 206–207.
  4. ^ Peter R. Cromwell (22 July 1999). Polyhedra. p. 63. ISBN 0-521-66405-5.
  5. ^ Eric W. Weisstein (2003). CRC concise encyclopedia of mathematics (2nd ed.). CRC Press. p. 329. ISBN 1-58488-347-2.
  6. ^ DeTemple, Duane W. (Feb 1991). "Carlyle circles and Lemoine simplicity of polygon constructions" (PDF). The American Mathematical Monthly. 98 (2): 97–108. doi:10.2307/2323939. JSTOR 2323939. Archived from the original (PDF) on 2015-12-21.
  7. ^ George Edward Martin (1998). Geometric constructions. Springer. p. 6. ISBN 0-387-98276-0.
  8. ^ Fitzpatrick, Richard (2008). Euklid's Elements of Geometry, Book 4, Proposition 11 (PDF). Translated by Richard Fitzpatrick. p. 119. ISBN 978-0-615-17984-1.
  9. ^ Mathematical Models by H. Martyn Cundy and A.P. Rollett, second edition, 1961 (Oxford University Press), p. 57.
  10. ^ John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, ISBN 978-1-56881-220-5 (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  11. ^ Weisstein, Eric W. "Cyclic Pentagon." From MathWorld--A Wolfram Web Resource. [1]
  12. ^ Robbins, D. P. (1994). "Areas of Polygons Inscribed in a Circle". Discrete and Computational Geometry. 12 (2): 223–236. doi:10.1007/bf02574377.
  13. ^ Robbins, D. P. (1995). "Areas of Polygons Inscribed in a Circle". The American Mathematical Monthly. 102 (6): 523–530. doi:10.2307/2974766. JSTOR 2974766.
  14. ^ *Buchholz, Ralph H.; MacDougall, James A. (2008), "Cyclic polygons with rational sides and area", Journal of Number Theory, 128 (1): 17–48, doi:10.1016/j.jnt.2007.05.005, MR 2382768.
  15. ^ Inequalities proposed in “Crux Mathematicorum, [2].
  16. ^ Hales, Thomas; Kusner, Wöden (September 2016), Packings of regular pentagons in the plane, arXiv:1602.07220


Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds

Read other articles:

Battle of the Polish–Soviet War For other uses, see Battle of Warsaw (disambiguation). You can help expand this article with text translated from the corresponding article in Polish. (September 2021) Click [show] for important translation instructions. View a machine-translated version of the Polish article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is a…

British TV series or programme Prehistoric AutopsyFilm coverGenreDocumentary filmDirected byNatalie Humphreys(creative director)Narrated byGeorge McGavinAlice RobertsCountry of originUnited KingdomOriginal languageEnglishNo. of episodesThree one-hour episodesProductionProducersJane Aldous(executive producer);Graeme Thomson(series producer)CinematographyVic KusinPhil PiotrowskyEditorsPaul ContiJohn SteventonJohn WilsonRunning time3 h (180 min)Production companyBBCOriginal releaseNetwork…

Village in Kerman province, Iran For other places with the same name, see Sang. Village in Kerman, IranSang Persian: سنگVillageSangCoordinates: 30°52′19″N 56°08′09″E / 30.87194°N 56.13583°E / 30.87194; 56.13583[1]CountryIranProvinceKermanCountyZarandDistrictYazdanabadRural DistrictSirizPopulation (2016)[2] • Total483Time zoneUTC+3:30 (IRST) Sang (Persian: سنگ)[a] is a village in Siriz Rural District of Yazdanabad …

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「弐」…

Christ cleansing a leper (Yesus menyembuhkan seorang yang sakit kusta) karya Jean-Marie Melchior Doze, 1864. Yesus menyembuhkan seorang yang sakit kusta adalah suatu peristiwa mukjizat yang diperbuat oleh Yesus Kristus yang dicatat dalam bagian Perjanjian Baru di Alkitab Kristen. Peristiwa ini secara khusus dicatat dalam tiga kitab Injil Sinoptik, yaitu pada Injil Matius pasal 8,[1] Injil Markus pasal 1,[2] dan Injil Lukas pasal 5.[3] Injil Lukas memuat mukjizat penyembuh…

Численность населения республики по данным Росстата составляет 4 003 016[1] чел. (2024). Татарстан занимает 8-е место по численности населения среди субъектов Российской Федерации[2]. Плотность населения — 59,00 чел./км² (2024). Городское население — 76,72[3] % (2022)…

西維珍尼亞 美國联邦州State of West Virginia 州旗州徽綽號:豪华之州地图中高亮部分为西維珍尼亞坐标:37°10'N-40°40'N, 77°40'W-82°40'W国家 美國加入聯邦1863年6月20日(第35个加入联邦)首府(最大城市)查爾斯頓政府 • 州长(英语:List of Governors of {{{Name}}}]]) • 副州长(英语:List of lieutenant governors of {{{Name}}}]])吉姆·賈斯蒂斯(R)米奇·卡邁克爾(英…

إن حيادية وصحة هذه المقالة محلُّ خلافٍ. ناقش هذه المسألة في صفحة نقاش المقالة، ولا تُزِل هذا القالب من غير توافقٍ على ذلك. (نقاش) (مايو 2016) جزء من سلسلة مقالات حولالخَلقية تاريخ الخلقية تاريخ الخلقية الخلقية الإسلامية الخلقية المسيحية مذاهب الخلق علوم الخلق خلقية الأرض الفتي…

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 外…

此條目可能包含不适用或被曲解的引用资料,部分内容的准确性无法被证實。 (2023年1月5日)请协助校核其中的错误以改善这篇条目。详情请参见条目的讨论页。 各国相关 主題列表 索引 国内生产总值 石油储量 国防预算 武装部队(军事) 官方语言 人口統計 人口密度 生育率 出生率 死亡率 自杀率 谋杀率 失业率 储蓄率 识字率 出口额 进口额 煤产量 发电量 监禁率 死刑 国债 外…

Alessandro Florenzi Informasi pribadiTanggal lahir 11 Maret 1991 (umur 33)[1]Tempat lahir Roma, ItaliaTinggi 1,75 m (5 ft 9 in)Posisi bermain BekInformasi klubKlub saat ini AC MilanNomor 25Karier junior1995–2000 Atletico Acilia2000–2002 Lodigiani2002–2011 AS RomaKarier senior*Tahun Tim Tampil (Gol)2011– AS Roma 227 (25)2011–2012 → Crotone (pinjaman) 35 (11)2020 → Valencia (pinjaman) 12 (0)2020–2021 → Paris Saint-Germain (pinjaman) 21 (2)2021–2022 …

Provincia Arabia PetraeaProvinsi di Kekaisaran Romawi dan Kekaisaran Romawi Timur106–630anKekaisaran Romawi sekitar tahun 125 MIbu kotaPetra dan BostraSejarahSejarah • Penaklukan Romawi 106• Ditaklukan Muslim 630an Didahului oleh Digantikan oleh krjKerajaan Nabatea Decapolis Palaestina Salutaris Ghassaniyah klfKekhalifahan Rashidun Sekarang bagian dari Mesir Palestina Israel Yordania Suriah Arab Saudi Arabia Petraea atau Petrea, juga dikenal den…

This article is about the administrative county. For the Riksdag constituency, see Uppsala County (Riksdag constituency). County (län) of Sweden County of SwedenUppsala County Uppsala län (Swedish)County of Sweden FlagCoat of armsUppsala County in SwedenLocation map of Uppsala County in SwedenCoordinates: 59°51′30″N 17°39′00″E / 59.85833°N 17.65000°E / 59.85833; 17.65000CountrySwedenFormed1634CapitalUppsalaMunicipalities 8 ÄlvkarlebyEnköpingHåboHebyK…

British historian Not to be confused with David Nichol, David Nichols, David Nicholl, or David Nicholls. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: David Nicolle – news · newspapers · books · schola…

Mountainous region in northeast Pennsylvania This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Endless Mountains – news · newspapers · books · scholar · JSTOR (September 2016) (Learn how and when to remove this message) Counties (in red) in the Endless Mountains region of Northeastern Pennsylvania The Endless Mou…

1996 novel by Graham Joyce The Tooth Fairy First edition coverAuthorGraham JoyceCountryUnited KingdomLanguageEnglishGenresFantasy, horrorPublisherSignet BooksPublication date1996Media typePaperbackPages342AwardsAugust Derleth Award for Best NovelISBN0-451-18435-1 The Tooth Fairy is a fantasy and horror novel by English writer Graham Joyce. It was first published in the United Kingdom in paperback in 1996 by Signet Books, and in hardcover in the United States in 1998 by Tor Books. It is abou…

Gedung Stoomvaart Maatschappij Nederland Surabaya adalah kantor operasional Stoomvaart Maatschappij Nederland yang merupakan cabang dari kantor pusat yang berkedudukan di Batavia. Stoomvaart Maatschappij Nederland (SMN) didirikan di Amsterdam pada tanggal 13 Mei 1870.[1] Perusahaan ini membuka cabang di Hindia Belanda dengan tujuan pelayaran berfokus pada rute negeri Belanda dan Jawa melewati Terusan Suez yang kemudian lebih populer dengan istilah pelayaran pos. Perusahaan ini juga melay…

The Silent SeaPoster promosiHangul고요의 바다 Genre Misteri Fiksi ilmiah Cerita seru BerdasarkanThe Sea of Tranquilityoleh Choi Hang-yongDitulis olehPark Eun-kyoSutradaraChoi Hang-yongPemeran Bae Doona Gong Yoo Lee Joon Negara asalKorea SelatanBahasa asliKoreaJmlh. musim1Jmlh. episode8ProduksiProduser eksekutifJung Woo-sungRumah produksiArtist CompanyDistributorNetflixRilis asliRilis2021 (2021) The Silent Sea (Hangul: 고요의 바다; RR: Goyo-ui bada) adalah ser…

国际麻醉品管制局 国际麻醉品管制局 [4] 英语:The International Narcotics Control Board [1]西班牙语:Junta Internacional de Fiscalización de Estupefacientes [2]法语:Organe International de Contrôle des Stupéfiants [3] 簡稱INCB成立時間1961年法律地位运作中總部 奥地利维也纳領導人 Jallal Toufiq [5]網站incb.org 国际麻醉品管制局是一个监控执行联合国药品公约的准司法监控机构…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: シートベルト – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2022年3月) 3点式シートベルト シートベルト(英: Seat b…