In mathematics , the trigonometric moment problem is formulated as follows: given a sequence
{
c
k
}
k
∈
N
0
{\displaystyle \{c_{k}\}_{k\in \mathbb {N} _{0}}}
, does there exist a distribution function
μ
{\displaystyle \mu }
on the interval
[
0
,
2
π
]
{\displaystyle [0,2\pi ]}
such that:
c
k
=
1
2
π
∫
0
2
π
e
−
i
k
θ
d
μ
(
θ
)
,
{\displaystyle c_{k}={\frac {1}{2\pi }}\int _{0}^{2\pi }e^{-ik\theta }\,d\mu (\theta ),}
with
c
−
k
=
c
¯
k
{\displaystyle c_{-k}={\overline {c}}_{k}}
for
k
≥
1
{\displaystyle k\geq 1}
. In case the sequence is finite, i.e.,
{
c
k
}
k
=
0
n
<
∞
{\displaystyle \{c_{k}\}_{k=0}^{n<\infty }}
, it is referred to as the truncated trigonometric moment problem .
An affirmative answer to the problem means that
{
c
k
}
k
∈
N
0
{\displaystyle \{c_{k}\}_{k\in \mathbb {N} _{0}}}
are the Fourier-Stieltjes coefficients for some (consequently positive) Radon measure
μ
{\displaystyle \mu }
on
[
0
,
2
π
]
{\displaystyle [0,2\pi ]}
.
Characterization
The trigonometric moment problem is solvable, that is,
{
c
k
}
k
=
0
n
{\displaystyle \{c_{k}\}_{k=0}^{n}}
is a sequence of Fourier coefficients, if and only if the (n + 1) × (n + 1) Hermitian Toeplitz matrix
T
=
(
c
0
c
1
⋯
c
n
c
−
1
c
0
⋯
c
n
−
1
⋮
⋮
⋱
⋮
c
−
n
c
−
n
+
1
⋯
c
0
)
{\displaystyle T=\left({\begin{matrix}c_{0}&c_{1}&\cdots &c_{n}\\c_{-1}&c_{0}&\cdots &c_{n-1}\\\vdots &\vdots &\ddots &\vdots \\c_{-n}&c_{-n+1}&\cdots &c_{0}\\\end{matrix}}\right)}
with
c
−
k
=
c
k
¯
{\displaystyle c_{-k}={\overline {c_{k}}}}
for
k
≥
1
{\displaystyle k\geq 1}
,
is positive semi-definite .
The "only if" part of the claims can be verified by a direct calculation. We sketch an argument for the converse. The positive semidefinite matrix
T
{\displaystyle T}
defines a sesquilinear product on
C
n
+
1
{\displaystyle \mathbb {C} ^{n+1}}
, resulting in a Hilbert space
(
H
,
⟨
,
⟩
)
{\displaystyle ({\mathcal {H}},\langle \;,\;\rangle )}
of dimensional at most n + 1 . The Toeplitz structure of
T
{\displaystyle T}
means that a "truncated" shift is a partial isometry on
H
{\displaystyle {\mathcal {H}}}
. More specifically, let
{
e
0
,
…
,
e
n
}
{\displaystyle \{e_{0},\dotsc ,e_{n}\}}
be the standard basis of
C
n
+
1
{\displaystyle \mathbb {C} ^{n+1}}
. Let
E
{\displaystyle {\mathcal {E}}}
and
F
{\displaystyle {\mathcal {F}}}
be subspaces generated by the equivalence classes
{
[
e
0
]
,
…
,
[
e
n
−
1
]
}
{\displaystyle \{[e_{0}],\dotsc ,[e_{n-1}]\}}
respectively
{
[
e
1
]
,
…
,
[
e
n
]
}
{\displaystyle \{[e_{1}],\dotsc ,[e_{n}]\}}
. Define an operator
V
:
E
→
F
{\displaystyle V:{\mathcal {E}}\rightarrow {\mathcal {F}}}
by
V
[
e
k
]
=
[
e
k
+
1
]
for
k
=
0
…
n
−
1.
{\displaystyle V[e_{k}]=[e_{k+1}]\quad {\mbox{for}}\quad k=0\ldots n-1.}
Since
⟨
V
[
e
j
]
,
V
[
e
k
]
⟩
=
⟨
[
e
j
+
1
]
,
[
e
k
+
1
]
⟩
=
T
j
+
1
,
k
+
1
=
T
j
,
k
=
⟨
[
e
j
]
,
[
e
k
]
⟩
,
{\displaystyle \langle V[e_{j}],V[e_{k}]\rangle =\langle [e_{j+1}],[e_{k+1}]\rangle =T_{j+1,k+1}=T_{j,k}=\langle [e_{j}],[e_{k}]\rangle ,}
V
{\displaystyle V}
can be extended to a partial isometry acting on all of
H
{\displaystyle {\mathcal {H}}}
. Take a minimal unitary extension
U
{\displaystyle U}
of
V
{\displaystyle V}
, on a possibly larger space (this always exists). According to the spectral theorem , there exists a Borel measure
m
{\displaystyle m}
on the unit circle
T
{\displaystyle \mathbb {T} }
such that for all integer k
⟨
(
U
∗
)
k
[
e
n
+
1
]
,
[
e
n
+
1
]
⟩
=
∫
T
z
k
d
m
.
{\displaystyle \langle (U^{*})^{k}[e_{n+1}],[e_{n+1}]\rangle =\int _{\mathbb {T} }z^{k}dm.}
For
k
=
0
,
…
,
n
{\displaystyle k=0,\dotsc ,n}
, the left hand side is
⟨
(
U
∗
)
k
[
e
n
+
1
]
,
[
e
n
+
1
]
⟩
=
⟨
(
V
∗
)
k
[
e
n
+
1
]
,
[
e
n
+
1
]
⟩
=
⟨
[
e
n
+
1
−
k
]
,
[
e
n
+
1
]
⟩
=
T
n
+
1
,
n
+
1
−
k
=
c
−
k
=
c
k
¯
.
{\displaystyle \langle (U^{*})^{k}[e_{n+1}],[e_{n+1}]\rangle =\langle (V^{*})^{k}[e_{n+1}],[e_{n+1}]\rangle =\langle [e_{n+1-k}],[e_{n+1}]\rangle =T_{n+1,n+1-k}=c_{-k}={\overline {c_{k}}}.}
As such, there is a
j
{\displaystyle j}
-atomic measure
m
{\displaystyle m}
on
T
{\displaystyle \mathbb {T} }
, with
j
≤
2
n
+
1
<
∞
{\displaystyle j\leq 2n+1<\infty }
(i.e. the set is finite), such that
c
k
=
∫
T
z
−
k
d
m
=
∫
T
z
¯
k
d
m
,
{\displaystyle c_{k}=\int _{\mathbb {T} }z^{-k}dm=\int _{\mathbb {T} }{\bar {z}}^{k}dm,}
which is equivalent to
c
k
=
1
2
π
∫
0
2
π
e
−
i
k
θ
d
μ
(
θ
)
.
{\displaystyle c_{k}={\frac {1}{2\pi }}\int _{0}^{2\pi }e^{-ik\theta }d\mu (\theta ).}
for some suitable measure
μ
{\displaystyle \mu }
.
Parametrization of solutions
The above discussion shows that the trigonometric moment problem has infinitely many solutions if the Toeplitz matrix
T
{\displaystyle T}
is invertible. In that case, the solutions to the problem are in bijective correspondence with minimal unitary extensions of the partial isometry
V
{\displaystyle V}
.
See also
Notes
References
Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis . Philadelphia, PA: Society for Industrial and Applied Mathematics. doi :10.1137/1.9781611976397 . ISBN 978-1-61197-638-0 .
Akhiezer, N.I.; Kreĭn, M.G. (1962). Some Questions in the Theory of Moments . Translations of mathematical monographs. American Mathematical Society. ISBN 978-0-8218-1552-6 .
Edwards, R. E. (1982). Fourier Series . Vol. 85. New York, NY: Springer New York. doi :10.1007/978-1-4613-8156-3 . ISBN 978-1-4613-8158-7 .
Geronimus, J. (1946). "On the Trigonometric Moment Problem" . Annals of Mathematics . 47 (4): 742– 761. doi :10.2307/1969232 . ISSN 0003-486X . JSTOR 1969232 .
Katznelson, Yitzhak (2004). An Introduction to Harmonic Analysis . Cambridge University Press. doi :10.1017/cbo9781139165372 . ISBN 978-0-521-83829-0 .
Schmüdgen, Konrad (2017). The Moment Problem . Graduate Texts in Mathematics. Vol. 277. Cham: Springer International Publishing. doi :10.1007/978-3-319-64546-9 . ISBN 978-3-319-64545-2 . ISSN 0072-5285 .
Simon, Barry (2005). Orthogonal polynomials on the unit circle. Part 1. Classical theory . American Mathematical Society Colloquium Publications. Vol. 54. Providence, R.I.: American Mathematical Society . ISBN 978-0-8218-3446-6 . MR 2105088 .
Zygmund, A. (2002). Trigonometric Series (third ed.). Cambridge: Cambridge University Press. ISBN 0-521-89053-5 .