Thioureas have a trigonal planar molecular geometry of the N2C=S core. The C=Sbond distance is near 1.71 Å, which is 0.1 Å longer than in normal ketones (R2C=O). The C–N bond distances are short.[1] Thioureas occurs in two tautomeric forms. For the parent thiourea, the thione form predominates in aqueous solutions.[2] The thiol form, known as an isothiourea, can be encountered in substituted compounds such as isothiouronium salts.
On the other hand, some compounds depicted as isothioureas and in fact thioureas, one example being mercaptobenzimidazole.[3]
^Allegretti, P.E; Castro, E.A; Furlong, J.J.P (March 2000). "Tautomeric equilibrium of amides and related compounds: theoretical and spectral evidences". Journal of Molecular Structure: THEOCHEM. 499 (1–3): 121–126. doi:10.1016/S0166-1280(99)00294-8.
^Form, G. R.; Raper, E. S.; Downie, T. C. (1976). "The crystal and molecular structure of 2-mercaptobenzimidazole". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry. 32 (2): 345–348. doi:10.1107/S0567740876003026.
^Herr, R. J.; Kuhler, L.; Meckler, H.; Opalka, C. J. (2000). "A Convenient Method for the Preparation of Primary and Symmetrical N,N′-Disubstituted Thioureas". Synthesis. 2000 (11): 1569–1574. doi:10.1055/s-2000-7607.