Sulfidostannates , or thiostannates are chemical compounds containing anions composed of tin linked with sulfur . They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates , and thiogermanates , and by varying the chalcogen: selenostannates , and tellurostannates . Oxothiostannates have oxygen in addition to sulfur.[ 1] Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,
Some thiostannate minerals are known. In nature the tin can be partly replaced by arsenic, germanium, antimony or indium. Many thiostannate minerals contain copper, silver or lead. In the field of mineralogy, these compound can be termed sulfostannates or sulphostannates .
Different cluster anions are known: [SnS4 ]4– , [SnS3 ]2– , [Sn2 S5 ]2– , [Sn2 S6 ]4– , [Sn2 S7 ]6– , [Sn2 S8 ]2– , [Sn3 S7 ]2– , [Sn4 S9 ]2– , [Sn5 S12 ]4– , or [Sn4 S10 ]4– .[ 2]
The number of sulfur atoms coordinated around the tin atom is most commonly four. However there are also complexes with five or six sulfur atoms surrounding the tin. The behaviour for selenium and tellurium differs as only five selenium or four tellurium atoms can bind to a tin atom. The smaller germanium atom can only accommodate four sulfur atoms. For lead it is hard for it to be in the +4 oxidation state. The SnSn polyhedrons can be standalone in strongly alkaline conditions, or at higher concentrations or less alkaline can condense together. Polyhedra shapes are tetrahedron for four, trigonal bipyramid for five, and octahedron for six sulfur atoms. The polyhedra can be connected at a vertex (corner), or at an edge. Where connected at an edge, four membered rings of -SnSSnS- with internal angles close to 90°.[ 3] [Sn2 S7 ]6– is corner bridged. Tetrahedra linked by at the corner by a disulfur bridge are unknown.[ 3]
Sn10 O4 S20 8- is a supertetrahedron made from 1, 3 and 6 tin atoms connected by oxygen on the interior and sulfur on the surface.[ 3]
For anions with formula Snx Sy the condensation ratio c is given by x ⁄y . It can vary from 1 ⁄4 to just below 1 / 2 .[ 3]
Synthesis
The first human production of a thiostannate heated tin oxide with sodium carbonate and sulfur:[ 4]
2SnO2 + 2Na2 CO3 + 9S → 2Na2 SnS3 + 2CO2 + 3SO2
Transition metal complexes may be prepared by crystallisation from the ligand solvent.[ 4]
Copper(II) is normally reduced by sulfide S2- in thiostannates to copper(I).[ 5]
Anions
formula
name
coordination
dimensionality
description
[SnS4 ]4−
4
0
tetrahedra
[Sn2 S6 ]4−
bis(μ-sulfido)-tetrathiolato-di-tin
4
0
edge shared
[Sn3 S9 ]6−
1,3,5,2,4,6-trithiatristanninane-2,2,4,4,6,6-hexakis(thiolate)
4
0
6 membered ring
[Sn4 S10 ]4-
4
0
tetrameric adamantane-like : tetrahedron of tetrahedra, 6 bridging sulfur, 4 terminal sulfur
Reactions
Some hydrates are unstable, where water reacts with the sulfide to make hydrogen sulfide gas.
List
formula
system
space group
unit cell Å
volume
density
comment
Li4 SnS4
orthorhombic
Pnma
a=13.812 b=7.962 c=6.370
[ 6]
[Li8 (H2 O)29 ][Sn10 O4 S20 ]· 2H2 O
triclinic
P 1
a = 11.232, b = 13.097, c = 23.735, α = 102.73°, β = 90.43°, γ = 93.44°, Z = 2
3399
oxothiostannate
[ 7]
(NH4 )4 Sn2 S6 ·3H2 O
orthorhombic
P 41 21 2
a =8.56294 b =8.56294 c = 22.7703
[ 8]
(NH4 )6 Sn3 S9 ·1.3H2 O
monoclinic
C 2
a 16.9872 b 10.54777 c 21.0871 β 108.0389°
3592.6
2.154
colourless
[ 9]
[(CH3 )3 NH]2 Sn3 S7
[ 3]
[(CH3 )4 N]2 Sn3 S7 · H2 O
[ 3]
[(CH3 )4 N]4 Sn4 S10
[ 8]
[(CH3 CH2 )4 N]2 Sn3 S7
[ 3]
[(CH3 CH2 CH2 )4 N]2 Sn4 S9
[ 3]
[(CH3 CH2 CH2 CH2 )4 N]2 Sn4 S9
[ 3]
[(CH3 CH2 CH2 )4 N][(CH3 )3 NH]Sn4 S9
[ 3]
(C12 H25 NH3 )4 Sn2 S6 · 2H2 O
[ 3]
[dabcoH]2 Sn3 S7
[ 3]
(Et4 N)2 Sn(S4 )3
[ 3]
(Et4 N)2 Sn(S4 )2 (S6 )
[ 3]
((CH3 C(NH2 )2 )8 Sn2 S6 SnS4
monoclinic
C 1 2/m 1
a=23.7739 b=16.0647 c=11.8936 β=99.029 Z=4
4486.1
1.702
colourless
[ 9]
((CH3 )2 NH2 )(NH4 )SnS3 dimethylammonium ammonium
orthorhombic
P21 21 21
a =5.9393 b =12.1816 c =12.4709 Z=4
902.26
2.054
colourless
[ 9]
(DBNH)2 Sn3 S6 DBN=1,5-diazabicyclo[4.3.0]non-7-ene
Sn(II) and Sn(IV)
[ 10]
(1AEP)2 Sn3 S7 1AEP = 1-(2-aminoethyl) piperidine
orthorhombic
P21 21 21
a=13.2299 b= 22.2673 c=9.0772 Z=4
2674.1
pale yellow
[ 11]
SnS2 ·en
monoclinic
C 2/c
a 15.317 b 10.443 c 12.754, β 93.62°
[ 12]
[en H]4 [Sn2 S6 ]·en
triclinic
P 1
a 9.8770 b 9.9340 c 15.4230, α 72.630° β 86.220° γ 81.380°
[ 12]
Na2 SnS3
R 3 m
a=3.834 c=19.876 Z=2
253
3.43
[ 4] [ 13]
Na4 SnS4
tetragonal
P 4 21c
a=7.837 c=6.950
427
2.64
[ 13]
Na4 Sn2 S6
[ 3]
Na4 Sn2 S6 · 14H2 O
triclinic
P 1
a=10.114 b=7.027 c=9.801 α=108.30 β=92.18 γ=91.11 Z=1
663
1.95
[ 2]
Na4 SnS4 · 14H2 O
monoclinic
C 2/c
a=8.622 b=23.534 c=11.347 β =110.53 Z=4
2156
1.82
[ 13]
Na4 Sn3 S8
[ 3]
Na5 [SnS4 ]Cl· 13H2 O
monoclinic
P 21 /m
a=8.4335 b=11.4958 c=11.5609 β =91.066 Z=2
1120.63
1.872
[ 2]
Na4 Sn2 S6 ·5H2 O
[ 3]
Na6 Sn2 S7
C 2/c
a=9.395 b=10.719 c=15.671 β=109.97 Z=4
1483
2.69
[ 13]
Mg2 SnS4
orthorhombic
Pnma
a=12.93 b=7.52 c=6.16 Z=4
599
3.28
[ 13]
Na2 MgSnS4
R 3 m
a 3.7496 b 3.7496 c 19.9130
[ 14]
(Ph4 P)2 Sn(S4 )3
[ 3]
K2 SnS3 · 2H2 O
[ 3]
K2 SnS3 · 2H2 O
orthorhombic
Pnma
a=6.429 b=15.621 c=10.569 Z=4
1061
2.06
[ 13]
K2 Sn2 S5
[ 3]
K2 Sn3 S7 · H2 O
[ 3]
[K4 (H2 O)4 ][SnS4 ]
[ 15]
Ca2 SnS4
orthorhombic
Pnma
a=13.74 b=8.23 c=6.44 Z=4
728
2.99
[ 13]
[H2 tepa][VIII (tepa)(μ-Sn2 Q6 )]2
orthorhombic
Abm 2
a =7.7486 b =40.410 c =16.745
[ 16]
Mn2 SnS4
tetragonal
I 41 /a
a=7.408 c=10.41 Z=8
571
4.15
[ 13]
[Mn(en)3 ]2 [Sn2 S6 ]
monoclinic
C 2/c
a=15.138 b=10.6533 c=23.586 β=118.42 Z=4
3345.2
1.787
colourless
[ 5] [ 17]
[Mn(en)3 ]2 Sn2 S6 ·2H2 O
monoclinic
P 21 /c
a=10.129, b=15.746, c=11.524, β=102.36° Z=2
1795.5
1.732
[ 18]
[Mn(en)2 ]2 (μ-en)[Sn2 S6 ]
triclinic
a=9.0017 b=9.7735 c=10.8421 α =60.38° β =67.23° γ =70.25°
752.38
[ 16]
[Mn(dien)2 ]2 Sn2 S6
monoclinic
P 21 /c
a=12.48 12, b= 9.3760, c=17.7617, β=121.752°, Z=2,
1767.5
1.789
[ 18]
[Mn(tren)]2 Sn2 S6
triclinic
P 1
a 7.653 b 8.088 c 12.200, α 97.27° β 104.06° γ 108.80° Z=1
676.0
2.044
yellow
[ 5] [ 19]
[Mn(tren)(H2 O)][Mn(baen)]3 Mn4 Sn6 S20 ∙9H2 O
orthorhombic
P 21 3
a =21.404 b =21.404 c = 21.404
super tetrahedron
[ 20]
{Mn(tepa)}2 (μ -Sn2 S6 )
tetragonal
I 41 /a
a=25.977 c=10.041 Z=8
6775
1.800
yellow
[ 19]
{[Mn(trien)]2 [SnS4 ]}
[ 5]
{[Mn(C6 H18 N4 )]2 SnS4 }· 4H2 O
monoclinic
P 21 /c
a 10.8446 b 20.974 c 13.2746 β 113.487°
[ 21]
{[Mn(phen)2 ]2 (μ2 -Sn2 S6 )}
monoclinic
P 21 /n
a =10.8230 b =9.8940 c =24.811 β =91.356°
[ 22]
{[Mn(phen)2 ]2 (μ2 -Sn2 S6 )}·phen
triclinic
P 1
a =10.0642 b =10.6249 c =13.693, α =71.700° β =81.458° γ =84.346°
[ 22]
{[Mn(phen)2 ]2 [Sn2 S6 ]}· phen· H2 O phen = 1,10-phenanthroline
triclinic
P 1
a =11.3203 b =12.1436 c =12.7586, α =113.200° β =90.908° γ =110.974°
[ 5] [ 22]
[Mn(phen)]2 (SnS4 )·H2 O
monoclinic
C 2/m
a=16.146 b=19.262 c=9.938 β =124.970 Z=4
2532.6
1.928
red chain
[ 23]
{[Mn(phen)2 ]2 [μ-η2 -η2 -SnS4 ]2 [Mn(phen)]2 }·H2 O
triclinic
P 1
a =10.8703 b =12.5183 c =14.9644, α =103.381° β =108.390° γ =101.636°
[ 22]
{[Mn(2,2′-bipy)2 ]2 [Sn2 S6 ]}
[ 24]
(1,4-dabH)2 MnSnS4 1,4-dab = 1,4-diaminobutane
orthorhombic
Fdd 2
a = 22.812, b = 24.789, c = 6.4153, Z = 8
3627.8
[ 25]
Li4 MnSn2 Se7
monoclinic
Cc
a=18.126 b=7.2209 c=10.740 β =93.43 Z=4
1403.2
4.132
orange
[ 26]
Fe2 SnS4
tetragonal
I 41 /a
a=7.308 c=10.338 Z=4
552
4.32
[ 13]
{[Fe(tepa)]2 [Sn2 S6 ]}
tetragonal
I 41 /a
[ 5] [ 27]
{[Fe(1,2-dach)2 ][Sn2 S6 ]}· 2(1,2-dachH)
[ 5]
{[Fe(phen)2 ]2 [Sn2 S6 ]}· phen· H2 O
[ 5]
[Co(en)3 ]2 [Sn2 S6 ]
orthorhombic
Pbca
a=15.640 b=11.564 c=18.742 Z=4
2289.7
1.779
yellow
[ 5] [ 17]
[Co(dien)2 ]2 [Sn2 S6 ]
[ 5]
[Co2 (cyclam)2 Sn2 S6 ]·2H2 O
[ 28]
[Co(tren)]2 Sn2 S6
monoclinic
C 2/c
a=12.228 b=9.7528 c=23.285 β =102.90
2706.8
[ 5] [ 16]
{[Co(cyclam)]2 [Sn2 S6 ]}n · 2n H2 O cyclam = 1,4,8,11-tetraazacyclotetradecane
[ 5]
{[Co(tepa)]2 [Sn2 S6 ]} tepa=tetraethylenepentamine
tetragonal
I 41 /a
a=25.742 c=9.898
6558
[ 5] [ 27] [ 16]
{[Co(phen)2 ]2 [Sn2 S6 ]}· phen· H2 O
[ 5]
[Co(2-(aminomethyl)pyridine)3 ]2 Sn2 S6 · 10H2 O (2amp)
monoclinic
P 21 /c
a=10.1443 b=14.6124 c=18.8842 β =90.601° Z=2
2799.1
1.633
yellow
[ 29]
[Co(trans -1,2-diaminocyclohexane)3 ]2 Sn2 S6 · 8H2 O (dach)
monoclinic
P 21 /n
a=12.6521 b=11.7187 c=20.4386 β =91.262° Z=2
3029.6
1.509
red
[ 29]
Ni6 SnS2 Butianite
tetragonal
I 4/mmm
a = 3.650, c = 18.141 Z=2
241.7
7.62
opaque
[ 30]
[Ni(en)3 ]2 [Sn2 S6 ]
[ 5]
[Ni(dap)3 ]2 [Sn2 S6 ]· 2H2 O dap=1,2-diaminopropane
triclinic
P 1
a=9.9046 b=10.527 c=11.319 α =72.13° β =85.19° γ =63.63°
1004.5
[ 5] [ 16]
[Ni(1,2-dach)3 ]2 [Sn2 S6 ]· 4H2 O 1,2-dach = 1,2-diaminocyclohexane
[ 5]
[Ni(dien)2 ]2 [Sn2 S6 ]
[ 5]
{[Ni(cyclen)]6 [Sn6 S12 O2 (OH)6 ]}· 2(ClO4 )· 19H2 O
cyclen = 1,4,7,10-tetraazacyclododecane
[ 31]
[Ni(cyclen)(H2 O)2 ]4 [Sn10 S20 O4 ]·~ 13H2 O
[ 31]
{[Ni(cyclen)]6 [Sn6 S12 O2 (OH)6 ]}· 2(ClO4 )· 19H2 O
monoclinic
C 2/c
a=25.7223 b=15.6522 c=29.070 β =105.879 Z=4
11257
1.863
oxothiostannate
[ 32]
[Ni(2amp)3 ]2 [Sn2 S6 ]· 9.5H2 O 2amp = 2-(aminomethyl)pyridine
monoclinic
P 21 /n
a=18.7021 b=14.6141 c=20.2591 β= 97.696 Z=4
5487.2
1.655
purple
[ 4]
[Ni(aepa)2 ]2 [Sn2 S6 ] aepa=N -2-aminoethyl-1,3-propandiamine
[ 5]
[Ni(tren)]2 Sn2 S6
monoclinic
C 2/c
a=23.371 b=8.231 c=14.274 β =107.230 Z=4
2622.6
2.127
[ 5] [ 33]
[Ni(tren)2 ]2 [Sn2 S6 ]· 8H2 O
orthorhombic
P 42 /n
a =26.1885 b =26.1885 c =11.1122
[ 5] [ 34]
[Ni(tren)(2amp)]2 [Sn2 S6 ]
triclinic
P 1
a =10.2878 b =11.1100 c =11.4206, α =84.740° β =84.395° γ =79.093°
[ 5] [ 34]
[Ni(tren)(2amp)]2 [Sn2 S6 ]·10H2 O
monoclinic
P 21 /n
a =12.1933 b =13.4025 c =14.8920 β = 103.090°
[ 35]
[Ni(tren)(en)]2 [Sn2 S6 ]·2H2 O
monoclinic
P 21 /n
a 12.7041 b 9.8000 c 15.3989, β 108.843°
[ 35]
[Ni(tren)(en)]2 [Sn2 S6 ]·6H2 O
monoclinic
P 21 /n
a 12.5580 b 9.7089 c 16.0359, β 91.827°
[ 35]
[Ni(tren)(1,2-dach)]2 [Sn2 S6 ]·3H2 O
triclinic
P 1
a 9.8121 b 10.0080 c 12.422, α 86.38° β 79.65° γ 65.72°
[ 35]
[Ni(tren)(1,2-dach)]2 [Sn2 S6 ]·4H2 O
monoclinic
P 21 /n
a 10.7119 b 19.0797 c 11.1005, β 104.803°
[ 35]
{[Ni(cyclam)]2 [Sn2 S6 ]}· 2H2 O
[ 5]
{[Ni(tepa)]2 [Sn2 S6 ]}
monoclinic
P 21 /n
[ 5] [ 27]
{[Ni(phen)2 ]2 [Sn2 S6 ]}· 2,2′-bipy
monoclinic
P 21 /n
a=10.5715 b=9.9086 c=24.9960 β =92.800 Z=2
2615.17
1.809
deep red
[ 5] [ 36]
{[Ni(phen)2 ]2 Sn2 S6 }·4,4′-bipy·½H2 O 4,4′-bipy = 4,4′-bipyridine
monoclinic
C 2/c
a=18.3431 b=19.4475 c=15.0835 β =95.556 Z=4
5355.4
1.789
dark red-brown
[ 36]
{[Ni(phen)2 ]2 [Sn2 S6 ]}· phen· H2 O
[ 24]
[Ni(L1 )][Ni(L1 )Sn2 S6 ]n · 2H2 O L1 = 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane
monoclinic
P 21/c
[ 37]
[Ni(L2 )]2 [Sn2 S6 ]· 4H2 O L2 = 1,8-diethyl-1,3,6,8,10,13-hexaazacyclotetradecane
triclinic
P 1
[ 37]
[Ni(tren)(ma)(H2 O)]2 [Sn2 S6 ]·4H2 O ma = methylamine
monoclinic
P 21 /n
a=11.1715 b=10.5384 c=15.8594 Z=2
1827.45
1.835
[ 33]
[Ni(tren)(1,2-dap)]2 [Sn2 S6 ]·2H2 O
monoclinic
P 21 /n
a=12.9264 b=10.1627 c=15.6585 Z=2
1889.8
1.799
[ 33]
[Ni(tren)(1,2-dap)]2 [Sn2 S6 ]·4H2 O
monoclinic
C 2/c
a =14.3925 b =15.1550 c =18.9307, β =99.108°
[ 35]
[Ni(2amp)3 ]2 [Sn2 S6 ]· 9.5H2 O 2amp = 2-(aminomethyl)pyridine
monoclinic
P 21 /n
a=18.7021 b=14.6141 c=20.2591 Z=4
5487.23
1.655
purple
[ 4]
Cu2 SnS3 Mohite
monoclinic
a=23.10 b=6.25 c=6.25 β =101.0°
4.69
greenish grey
[ 13] [ 38]
Cu3 SnS4 Kuramite
tetragonal
I 4 2m
a = 5.445, c = 10.75, Z = 2
318.72
4.56
[ 39]
Cu4 SnS4
orthorhombic
Pnma
a=13.70 b=7.750 c=6.454 Z=4
685
4.96
[ 13]
Cu4 SnS6 Erazoite
rhombohedral
R 3m
a = 3.739, c = 32.941, Z = 2
4.53
black
[ 40]
Cu4 Sn7 S16
monoclinic
a=12.75 b=7.34 c=12.71 β =109.5 Z=2
1121
4.74
[ 13]
(DBUH)CuSnS3 DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene
monoclinic
P 21 /n
a =9.254 b =8.6190 c =18.135, β =92.80°
[ 41]
(1,4-dabH2 )Cu2 SnS4 1,4-dab = 1,4-diaminobutane
tetragonal
P 42 /n
a =14.539 c =11.478
[ 42]
(en H)6 Cu40 Sn15 S60 en=ethylenediamine
cubic
Pn 3 n
a=25.260 Z=4
16119
2.727
black
[ 43]
(en H)3 Cu7 Sn4 S12
trigonal
R 3 c
a=13.532 c=28.933 Z=6
4588
3.23
red
[ 43]
[H2 en]2 [Cu8 Sn3 S12 ]
[ 5]
(tren H3 )Cu7 Sn4 S12 tren = tris(2-aminoethyl)amine)
trigonal
R 3c
a=13.1059 c=29.347 Z=6
4365.4
3.317
[ 43]
[dienH2 ][Cu2 Sn2 S6 ]
[ 5]
[DBUH][CuSnS3 ] DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene
[ 5]
[1,4-dabH2 ][Cu2 SnS4 ]
[ 5]
{[Cu(cyclam)]2 [Sn2 S6 ]}· 2H2 O cyclam=1,4,8,11-tetraazacyclotetradecane
triclinic
P 1
a =9.0580 b =9.9419 c =10.2352, α =97.068° β =94.314° γ =101.514°
[ 5]
(DBNH)2 Cu6 Sn2 S8 DBN=1,5-diazabicyclo[4.3.0]non-7-ene
[ 10]
[Co(2-(aminomethyl)pyridine)3 ]2 Sn2 S6 · 10H2 O
monoclinic
P 21 /c
a =10.1443 b =14.6124 c =18.8842 β =90.601° Z=2
2799.1
1.633
yellow; unstable
[ 44]
[Co(trans -1,2-diaminocyclohexane)3 ]2 Sn2 S6 · 8H2 O
monoclinic
P 21 /n
a =12.6521 b =11.7187 c =20.4386 β =91.262° Z=2
3029.6
1.509
red
[ 44]
Na4 Cu32 Sn12 S48 ·4H2 O
cubic
Fm 3 c
a = 17.921 z = 13
black; absorption edge 2.0 eV
[ 45]
CuAlSnS4
cubic
a=10.28 Z=8
1074
4.17
[ 13]
K11 Cu32 Sn12 S48 ·4H2 O
cubic
Fm 3 c
a = 18.0559 z = 14.75
black; absorption edge 1.9 eV
[ 45]
Cu2 MnSnS4
tetragonal
a=5.49 c=10.72 Z=2
323
4.41
[ 13]
Cu2 FeSnS4 Stannite Ferrokësterite
tetragonal
I 4 2m
a = 5.4432, c = 10.7299 Z=2
317.91
grey
[ 46]
Cu2 FeSn3 S8
tetragonal
I41 /a
a=7.29 c=10.31 Z=2
548
4.82
[ 13]
Cu6 Fe2 SnS8 Mawsonite
Tetragonal
P 4 m 2
a = 7.603, c = 5.358 Z=1
309
4.65
brownish orange
[ 47]
Cu6 FeSn2 S8 Chatkalite
Tetragonal
P4 m 2
a = 7.61, c = 5.373 Z=1
311.1
5.00
[ 48]
Cu2 CoSnS4
Tetragonal
I 4 2m
a=5.402 c=10.805 Z=2
315
4.56
[ 13]
Cu2 NiSnS4
a=5.425 Z=1
160
4.49
[ 13]
Cu13 VSn3 S16 Nekrasovite
isometric
a=10.73
1,235
brown
[ 49]
[Zn(en)3 ]2 [Sn2 S6 ]
orthorhombic
Pbca
a=15.452 b=11.524 c=18.614 Z=4
3315.3
1.845
colourless
[ 5] [ 17]
{Zn(tren)}2 (μ -Sn2 S6 )
monoclinic
C 2/c
a 12.214 b 9.726 c 23.209 β 102.732°
2689.3
2.107
light yellow
[ 19] [ 50]
Cu2 ZnSnS4 Kësterite
tetragonal
I 4
a = 5.427, c = 10.871 Z=2
320.18
4.55
greenish black
[ 51]
Cu6 + Cu2 2+ (Fe2+ ,Zn)3 Sn2 S12 Stannoidite
orthorhombic
a = 10.76, b = 5.4, c = 16.09
934.9
4.68
brass
[ 52]
Cu3 (V,Ge,Sn)S4 Ge-Sn-Sulvanite
361
[ 53]
SnGeS3 Stangersite
monoclinic
P 21 /b
a = 7.270, b = 10.197, c = 6.846 β = 105.34° Z=4
489
3.98
orange
Rb4 SnS4
[ 3]
Rb4 Sn2 S6
[ 3]
Rb2 Sn3 S7 · 2H2 O
[ 3]
Rb2 Cu2 SnS4
orthorhombic
Ibam
a=5.528 b=11.418 c=13.700 Z=4
865
4.185
band gap 2.08 eV
[ 54]
Rb2 Cu2 Sn2 S6
monoclinic
C 2/c
a=11.026 b=11.019 c=20.299 β =97.79 Z=8
2444
3.956
band gap 1.44 eV
[ 54]
Rb2 ZnSn3 S8
[ 55]
[Rb4 (H2 O)4 ][SnS4 ]
[ 15]
Sr3 MnSn2 S8
cubic
I 4 3d
a = 14.2287 Z = 8
2880.7
3.743
dark green
[ 56]
Cu2 SrSnS4
trigonal
P 31
a = 6.29, c = 15.57 Z=3
534
4.31
[ 57] [ 13]
Sr6 Cu4 Sn4 S16
cubic
I 4 3d
a=13.982
2734
4.295
yellow
[ 58]
Sr6 Cu2 FeSn4 S16
cubic
I 4 3d
a=14.1349
band gap 1.53 eV
[ 59]
SrSnS3
orthorhombic
Pnma
a=8.264 b=3.867 c=14.116 Z=4
451
4.45
[ 13]
[Y2 (dien)4 (μ-OH)2 ]Sn2 S6
monoclinic
P 21 /n
a=11.854 b=11.449 c=13.803 β =97.978 Z=2
1855
1.888
light yellow
[ 60]
α- Ag8 SnS6
cubic
a=21.43
9842
[ 13]
β- Ag8 SnS6
cubic
a=10.85
1277
[ 13]
Ag8 SnS6 Canfieldite
orthorhombic
a = 15.298, b = 7.548, c = 10.699 Z=4
1,235.4
6.311
metallic
[ 61]
Na3 AgSnS4
monoclinic
P 21 /c
a 8.109 b 6.483 c 15.941, α 90° β 103.713
double chain
[ 62]
AgCrSnS4
cubic
a=10.74 Z=8
1239
4.92
[ 13]
Ag2 MnSnS4 – Agmantinite
orthorhombic
a = 6.632, b = 6.922, c = 8.156 Z=2
4.574
orange
[ 63]
Ag2 ZnSnS4 Pirquitasite
tetragonal
I 4
a = 5.78, c = 10.82
361
black
[ 64]
Ag2 (Fe2+ ,Zn)SnS4 Hocartite
tetragonal
I 4 2m
a = 5.74, c = 10.96 Z=2
361
4.77
brownish grey
[ 65]
Ag1+ (Fe2+ 0.5 Sn4+ 1.5 )S4 Toyohaite
tetragonal
grey
[ 66]
[enH][Cu2 AgSnS4 ]
orthorhombic
Pnma
a=19.7256 b=7.8544 c= 6.5083 Z=4
1008.3
3.577
red
[ 67]
Ag2 SrSnS4
orthorhombic
a=7.127 b=8.117 c=6.854 Z=2
397
5.02
[ 13]
Sr6 Ag4 Sn4 S16
cubic
I 4 3d
a=14.2219 Z=4
2876.6
4.491
yellow
[ 58]
Sr6 Ag2 FeSn4 S16
cubic
I 4 3d
a=14.2766
band gap 1.87 eV
[ 59]
[1,4-dabH2 ][Ag2 SnS4 ] 1,4-dab = 1,4-diaminobutane
tetragonal
P 42 /n
a = 14.7847, c = 11.9087, Z = 8
2603.1
[ 5] [ 68]
[H2 en][Ag2 SnS4 ]
[ 5]
[CH3 NH3 ]2 Ag4 SnIV 2 SnII S8
orthorhombic
Pnma
a =19.378 b =7.390 c =13.683 Z=4
1959
3.756
Orange Sn(II)
[ 69]
[CH3 NH3 ]6 Ag12 Sn6 S21
monoclinic
P 21 /c
a =18.8646 b =19.9115 c =14.3125 β 100.117°
[ 70]
[(Me)2 NH2 ]3 [Ag5 Sn4 Se12 ]
tetragonal
P 4 21 m
a=13.998 c=8.685 Z=2
1701.9
4.403
dark red
[ 71]
[enH][Cu2 AgSnS4 ]
[ 5]
Cu2 CdSnS4
I 4 2m
a=5.402 c=10.86 Z=2
338
4.77
[ 13]
Ag2 CdSnS4
Cmc 21
a=4.111 b=7.038 c=6.685 Z=1
193
4.95
[ 13]
Cu2 (Cd,Zn,Fe)SnS4 Černýite
tetragonal
I 4 2m
a = 5.48, c = 10.828 Z=4
326
4.76
metallic
[ 72]
CuInSnS4
a=10.50 Z=8
1158
4.91
[ 13]
AgInSnS4
a=10.16 Z=8
1048
4.59
[ 13]
(Cu,Fe,Zn,Ag)3 (Sn,In)S4 Petrukite
orthorhombic
a = 7.66, b = 6.43, c = 6.26
308
brown
[ 73]
(Cu,Zn,Fe)3 (In,Sn)S4 Sakuraiite
isometric
a = 5.46 Z=1
162
greenish grey
[ 74]
Sn2 S3
orthorhombic
Pnma
a=8.864 b=3.7471 c=14.020 Z=4
466
4.76
[ 13]
Cs4 SnS4
0d
[ 3]
Cs2 Sn3 S7 · 0.5S8
2d
[ 3]
Cs4 Sn5 S12 · 2H2 O
2d
[ 3]
[Cs4 (H2 O)3 ][SnS4 ]
[ 15]
Cs2 Sn(S4 )2 (S6 )
[ 3]
Cs8 Sn10 O4 S20 · 13H2 O
[ 3]
[Cs10 (H2 O)18 ][Mn4 (μ 4 -S)(SnS4 )4 ]
[ 15]
Cs2 ZnSn3 S8
monoclinic
P 21 /n
a 7.5366 b 17.6947 c 12.4976, β =94.830° Z=4
1660.7
3.775
layered, band gap 3. eV
[ 55]
[Ba2 (H2 O)11 ][SnS4 ]
[ 15]
Li2 Ba6 MnSn4 S16
cubic
I 4 3d
a=14.6080 Z=4
3117.3
4.007
light yellow
[ 42]
Ag2 Ba6 MnSn4 S16
cubic
I 4 3d
a=14.7064 Z=4
3180.7
4.349
yellow
[ 42]
Ag2 BaSnS4
orthorhombic
I 222
a =7.127 b =8.117 c =6.854 Z=2
black
[ 75]
Ba3 Ag2 Sn2 S8
[ 76]
BaSnS2
Sn(II)
[ 77]
BaSn2 S3
Sn(II)
[ 77]
BaSnS3
orthorhombic
Pnma
a=8.527 b=3.933 c=14.515 Z=4
487
4.8
[ 13]
BaSnS3
monoclinic
C 2/c Cc
a=24.49 b=6.354 c=23.09 β =90.15 Z=28
3593
4.55
[ 13]
α- Ba2 SnS4
monoclinic
P 21 /c
a=8.481 b=8.526 c=12.280 β =112.97 Z=4
818
4.24
[ 13]
β- Ba2 SnS4
orthorhombic
Pnma
a=17.823 b=7.359 c=12.613
1654
4.18
[ 13]
Ba3 Sn2 S7
monoclinic
P 21 /c
a=11.073 b=6.771 c=18.703 β =100.77 Z=4
1378
4.21
[ 13]
K2 BaSnS4
R 3c
a 25.419 c 7.497
band gap 3.09 eV; SHG 0.5×AgGaS2
[ 78]
Ba6 Cu2 FeSn4 S16
cubic
I 4 3d
a=14.5260
band gap 1.2 eV
[ 59]
Ba6 Cu2 NiSn4 S16
cubic
I 4 3d
a=14.511
band gap 0.82 eV
[ 59]
Ba6 Li2 ZnSn4 S16
cubic
I 4 3d
a =14.5924
[ 79]
Ba6 Ag2 ZnSn4 S16
cubic
I 4 3d
a =14.6839
[ 79]
BaCdSnS4
orthorhombic
Fdd 2
a=21.57 b=21.76 c=13.110 Z=32
6152
4.290
yellow
[ 80]
Ba3 CdSn2 S8
cubic
I 4 3d
a=14.723
[ 81]
Ba6 CdAg2 Sn4 S16
cubic
I 4 3d
a=14.725
[ 81]
La2 SnS5
orthorhombic
Pbam
a=11.22 b=7.915 c=3.97 Z=2
352
5.26
[ 13]
[La(dien)3 ]2 [Sn2 S6 ]Cl2
band gap 3.25 eV
[ 82]
La(peha)(μ–SnS4 H) peha=pentaethylenehexamine
triclinic
P 1
a 8.609 b 9.327 c 14.649, α 79.2° β 85.5° γ 63.74°
[ 83]
BaCeSn2 S6
orthorhombic
Pmc 21
a 4.0665 b 19.859 c 11.873
[ 84]
BaPrSn2 S6
orthorhombic
Pmc 21
a 4.0478 b 19.8914 c 11.9303
[ 84]
BaNdSn2 S6
orthorhombic
Pmc 21
a 4.0098 b 19.761 c 11.841
[ 84]
[Nd2 (en)6 (μ2 -OH)2 ]Sn2 S6
monoclinic
P 21 /n
a =10.176, b =11.387, c =15.018, β =97.869°
[ 85]
Nd(peha)(μ–SnS4 H)
triclinic
P 1
a 8.621 b 9.372 c 14.656, α 78.28° β 84.33° γ 63.32°
[ 83]
{Nd(tepa)(μ–OH)}2 (μ–Sn2 S6 )]·H2 O tepa=tetraethylenepentamine
monoclinic
C 2/c
a =21.537 b =12.863 c =17.697 β =124.308°
[ 83]
[Nd(dien)3 ]2 [(Sn2 S6 )Cl2 ] dien = diethylenetriamine
monoclinic
P 21 /n
a = 11.672, b = 15.119, c = 14.157, β = 96.213°, Z = 4
2483.6
[ 86]
[Nd(dien)3 ]2 [(Sn2 S6 )(SH)2 ]
monoclinic
P 21 /n
a = 11.719, b = 15.217, c = 14.221, β = 95.775°, Z = 4
2523.1
[ 86]
(tetaH)2 [Eu2 (teta)2 (tren)2 (μ-Sn2 S6 )]Sn2 S6
triclinic
P 1
a=9.886 b=10.371 c=17.442 α =89.78 β =88.00 γ= 85.14 Z=1
1780.8
1.898
light yellow
[ 60]
[Eu2 (tepa)2 (μ-OH)2 (μ-Sn2 S6 )](tepa)0.5 ·H2 O tepa = tetraethylene-pentamine
monoclinic
C 2/c
a=19.803 b=14.998 c=17.800 β =126.57 Z=4
4246
1.970
colourless
[ 60]
[{Eu(en)3 }2 (μ-OH)2 ]Sn2 S6
monoclinic
P 21 /n
a = 10.116, b = 11.379, c = 14.949, β = 98.209°, Z=2
1703.1
[ 87]
[{Eu(en)3 }2 (μ-OH)2 ]Sn2 Se6
monoclinic
P 21 /n
a = 10.136, b = 11.771, c = 15.423, β = 99.322°, Z = 2
1815.8
[ 87]
[Eu(dien)3 ]2 [(Sn2 S6 )(SH)2 ]
monoclinic
P 21 /n
a = 11.656, b = 15.168, c = 14.173, β = 95.682°, Z = 2
2493.4
[ 87]
(tetaH)2 [Sm2 (teta)2 (tren)2 (μ-Sn2 S6 )]Sn2 S6
triclinic
P 1
a=9.920 b=10.382 c=17.520 α =89.91 β =88.07 γ= 85.23 Z=1
1797.1
1.877
light yellow
[ 60]
{Sm(tepa)(μ–OH)}2 (μ–Sn2 S6 )]·H2 O
monoclinic
C 2/c
a 21.487 b 12.8199 c 17.716 β 124.675°
[ 83]
[Sm2 (en)6 (μ 2 -OH)2 ]Sn2 S6
monoclinic
P 21 /n
a 10.129 b 11.377 c 14.962, β 98.128°
[ 88]
[Sm(dien)3 ]2 [(Sn2 S6 )Cl2 ]
monoclinic
P 21 /n
a 11.631 b 15.091 c 14.1420 β 96.202°
[ 88]
[Sm(dien)3 ]2 [(Sn2 S6 )(SH)2 ]
monoclinic
P 21 /n
a 11.698 b 15.212 c 14.219, β 95.654°
[ 88]
[Sm(trien)(tren)(Cl)]2 Sn2 S6 · en
triclinic
P 1
a 10.320 b 10.491 c 13.791, α 100.524° β 91.930° γ 119.083°
[ 88]
{Gd(tepa)(μ–OH)}2 (μ–Sn2 S6 )]·H2 O
monoclinic
C 2/c
a 21.455 b 12.804 c 17.735 β 124.81°
[ 83]
[Gd2 (en)6 (μ2 -OH)2 ]Sn2 S6
monoclinic
P 21 /n
a =10.1053 b =11.357 c =14.924, β = 98.346°
[ 85]
[Gd(dien)3 ]2 [(Sn2 S6 )Cl2 ] dien = diethylenetriamine
monoclinic
P 21 /n
a =11.662, b =15.168. c 14.185, β =95.696°
[ 85]
{Dy(tepa)(μ–OH)}2 (μ–Sn2 S6 )]·H2 O
monoclinic
C 2/c
a 21.363 b 12.717 c 17.654 β 124.915°
[ 83]
[Hen]2 [La(en)4 (CuSn3 S9 )]⋅ 0.5 en
[ 89]
[Hen]2 [Ce(en)4 (CuSn3 S9 )]⋅ 0.5 en
[ 89]
[Hen]4 [Nd(en)4 ]2 [Cu6 Sn6 S20 ]⋅ 3 en
[ 89]
[enH]4 [Sm(en)4 ]2 [Cu6 Sn6 S20 ]·3en
monoclinic
C 2/m
a 14.257 b 24.242 c 13.119 β 92.223°
[ 90]
[Hen]4 [Gd(en)4 ]2 [Cu6 Sn6 S20 ]⋅ 3 en
[ 89]
[enH]4 [Ho(en)4 ]2 [Cu6 Sn6 S20 ]·3en
monoclinic
C 2/m
a 14.3859 b 24.361 c 13.175, β 93.526°
[ 90]
EuCu2 SnS4
orthorhombic
Ama 2
a =10.4793, b =10.3610, c =6.4015, Z =4
[ 91] [ 92]
[Hen]4 [Er(en)4 ]2 [Cu6 Sn6 S20 ]⋅ 3 en
[ 89]
[Hen]4 [Er(en)4 ]2 [Ag6 Sn6 S20 ]·3en
monoclinic
C 2/m
a 14.557 b 24.397 c 13.412 β 94.42°
[ 93]
[Hen]4 [Tm(en)4 ]2 [Ag6 Sn6 S20 ]·3en
monoclinic
C 2/m
a 14.517 b 24.380 c 13.422 β 94.46°
[ 93]
[Hen]4 [Yb(en)4 ]2 [Ag6 Sn6 S20 ]·3en
monoclinic
C 2/m
a 14.536 b 24.397 c 13.397, β 94.63°
[ 93]
Cu6 SnWS8 Kiddcreekite
isometric
F 4 3m
a = 10.8178 Z=4
1265.9
4.934
grey
[ 94]
PtSnS Bowlesite
orthorhombic
Pca 21
a = 6.12 Å, b = 6.12 Å, c = 6.10 Å Z=4
228.47
10.06
metallic
[ 95]
(Pd,Pt)5 (Cu,Fe)4 SnTe2 S2 Oulankaite
tetragonal
a = 9.044, c = 4.937 Z=2
403.8
10.27
metallic
K2 Au2 SnS4
triclinic
P 1
a=8.212 b=11.019 c=7.314 α =97.82° β =111.72° γ =72.00° Z=2
483.2
4.941
band gap 2.75 eV
[ 96] [ 54]
K2 Au2 Sn2 S6
tetragonal
P 4/mmc
a=7.968 c=19.200 Z=4
1219
4.914
band gap 2.30 eV
[ 96] [ 54]
Cs2 Au2 SnS4
orthorhombic
Fddd
a = 6.143 b = 14.296 c = 24.578 Z = 4
2158.4
[ 96]
Ba[Au2 SnS4 ]
orthorhombic
C222 1
a=6.6387 b=11.0605 c=10.9676 Z=1
805.32
6.418
red; blue-green luminescent
[ 96]
K2 Hg3 Sn2 S8
[ 97]
Cu2 HgSnS4 Velikite
tetrahedral
I 4 2m
a = 5.55, c = 10.91
336
5.450
dark grey
[ 98]
SrHgSnSe4
[ 99]
BaHgSnSe4
orthorhombic
Fdd 2
a 22.441 b 22.760 c 13.579
[ 99]
EuHgSnS4
Ama 2
a =10.3730 b =10.4380 c =6.5680
SHG 1.77×AgGaS2
[ 100]
Tl4 SnS4
0d
Tl2 SnS3
1d
Tl2 Sn2 S5
3d
Tl4 Sn5 S12
3d
PbSnS2 Teallite
orthorhombic
Pnma
a = 4.26, b = 11.41, c = 4.09
198.8
6.36
metallic
PbSnS3 Suredaite
orthorhombic
Pnma
a=8.738 b=3.792 c=14.052 Z=4
466
6.01
metallic
[ 13]
(Pb,Sn)12.5 Sn5 FeAs3 S28 Coiraite
monoclinic
a = 5.84, b = 5.86, c = 17.32 β = 94.14° Z=4
591
5.92
dark grey
[ 101]
Fe2+ (Pb,Sn2+ )6 Sn4+ 2 Sb2 S14 Franckeite
triclinic
P 1
a = 46.9, b = 5.82, c = 17.3 α = 90°, β = 94.66°, γ = 90° Z=8
4701
5.90
black
[ 102]
Pb25.7 Sn8.3 Mn3.4 Sb6.4 S56.2 Ramosite
monoclinic
a = 5.82, b = 5.92, c = 17.65 β = 99.1°
600
[ 103]
Pb3 Sn4 FeSb2 S14 Cylindrite
triclinic
P 1
5.46
black
[ 104]
Pb6 Sn3 FeSb3 S16 Potosíite
triclinic
grey
(Pb,Ag)4 Sn4 FeSb2 S15 Incaite
monoclinic
[ 105]
Pb2 Fe2 Sn2 Sb2 S11 Plumbostannite
dark grey
[ 106]
Ba5 Pb2 Sn3 S13
orthorhombic
Pnma
[ 107]
Pb2 SnInBiS7 Abramovite
triclinic
P 1
a = 23.4, b = 5.77, c = 5.83 α = 89.1°, β = 89.9°, γ = 91.5°
786.79
metallic
[ 108]
Pb8 Sn7 Cu3 (Bi,Sb)3 S28 Lévyclaudite
triclinic
P 1
5.71
grey
[ 109]
References
^ Benkada, Assma; Reinsch, Helge; Poschmann, Michael; Krahmer, Jan; Pienack, Nicole; Bensch, Wolfgang (18 February 2019). "Synthesis and Characterization of a Rare Transition-Metal Oxothiostannate and Investigation of Its Photocatalytic Properties". Inorganic Chemistry . 58 (4): 2354– 2362. doi :10.1021/acs.inorgchem.8b02773 . PMID 30702285 . S2CID 73413851 .
^ a b c Lühmann, Henning; Näther, Christian; Jess, Inke; Bensch, Wolfgang (2019-10-14). "Synthesis, Crystal Structure, and Thermal Properties of Na 5 [SnS 4 ]Cl·13H 2 O" . Zeitschrift für anorganische und allgemeine Chemie . 645 (18– 19): 1165– 1170. doi :10.1002/zaac.201900169 . ISSN 0044-2313 .
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Sheldrick, William S.; Wachhold, Michael (September 1998). "Chalcogenidometalates of the heavier Group 14 and 15 elements". Coordination Chemistry Reviews . 176 (1): 211– 322. doi :10.1016/s0010-8545(98)00120-9 .
^ a b c d e Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2017-12-13). "Fast Room Temperature Synthesis of the Thiostannate [Ni(2amp) 3 ] 2 [Sn 2 S 6 ]·9.5H 2 O: Crystal Structure and Properties: Fast Room Temperature Synthesis of the Thiostannate [Ni(2amp) 3 ] 2 [Sn 2 S 6 ]·9.5H 2 O: Crystal Structure and Properties" . Zeitschrift für anorganische und allgemeine Chemie . 643 (23): 1861– 1866. doi :10.1002/zaac.201700193 .
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Benkada, Assma; Reinsch, Helge; Bensch, Wolfgang (2019-11-10). "The First Thiostannate Compound with Copper(II) Synthesized Under Ambient Conditions: Crystal Structure, Electronic and Thermal Properties" . European Journal of Inorganic Chemistry . 2019 (41): 4427– 4432. doi :10.1002/ejic.201900924 . ISSN 1434-1948 .
^ Kaib, Thomas; Haddadpour, Sima; Kapitein, Manuel; Bron, Philipp; Schröder, Cornelia; Eckert, Hellmut; Roling, Bernhard; Dehnen, Stefanie (2012-06-12). "New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li + -Conducting Tetralithium ortho- Sulfidostannate Li 4 SnS 4" . Chemistry of Materials . 24 (11): 2211– 2219. doi :10.1021/cm3011315 . ISSN 0897-4756 .
^ Kaib, Thomas; Kapitein, Manuel; Dehnen, Stefanie (October 2011). "Synthesis and Crystal Structure of [Li8(H2O)29][Sn10O4S20]·2H2O" . Zeitschrift für anorganische und allgemeine Chemie . 637 (12): 1683– 1686. doi :10.1002/zaac.201100268 .
^ a b Nørby, Peter; Overgaard, Jacob; Christensen, Per S.; Richter, Bo; Song, Xin; Dong, Mingdong; Han, Anpan; Skibsted, Jørgen; Iversen, Bo B.; Johnsen, Simon (2014-08-12). "(NH 4 ) 4 Sn 2 S 6 ·3H 2 O: Crystal Structure, Thermal Decomposition, and Precursor for Textured Thin Film" . Chemistry of Materials . 26 (15): 4494– 4504. doi :10.1021/cm501681r . ISSN 0897-4756 .
^ a b c Nørby, Peter; Eikeland, Espen; Overgaard, Jacob; Johnsen, Simon; Iversen, Bo B. (2015). "Expanding the structural versatility of thiostannate( iv ) complexes" . CrystEngComm . 17 (11): 2413– 2420. doi :10.1039/C4CE02224F . ISSN 1466-8033 .
^ a b Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (March 2009). "Solvothermal Syntheses of Two New Thiostannates and an In-Situ Energy Dispersive X-ray Scattering Study of Their Formation" . European Journal of Inorganic Chemistry . 2009 (7): 937– 946. doi :10.1002/ejic.200801084 .
^ Filsø, Mette Ø.; Chaaban, Iman; Al Shehabi, Amer; Skibsted, Jørgen; Lock, Nina (2017-10-01). "The structure-directing amine changes everything: structures and optical properties of two-dimensional thiostannates" . Acta Crystallographica Section B . 73 (5): 931– 940. Bibcode :2017AcCrB..73..931F . doi :10.1107/S2052520617010630 . ISSN 2052-5206 . PMID 28980999 .
^ a b Pada Nayek, Hari; Lin, Zhien; Dehnen, Stefanie (October 2009). "Solvent-modified SiS 2 -type SnS 2: Synthesis, Crystal Structures and Properties of {}^1_\infty[SnS 2 · en ] and [ en H] 4 [Sn 2 S 6 ]· en" . Zeitschrift für anorganische und allgemeine Chemie . 635 (12): 1737– 1740. doi :10.1002/zaac.200900157 .
^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj Olivier-Fourcade, J.; Jumas, J.C.; Ribes, M.; Philippot, E.; Maurin, M. (January 1978). "Evolution structurale et nature des liaisons dans la série des composés soufrés du silicium, du germanium, et de l'étain" . Journal of Solid State Chemistry (in French). 23 (1– 2): 155– 176. Bibcode :1978JSSCh..23..155O . doi :10.1016/0022-4596(78)90062-2 .
^ Heppke, Eva M.; Lerch, Martin (2020-09-25). "Na 2 MgSnS 4 – a new member of the A 2 I B II C IV X 4 family of compounds" . Zeitschrift für Naturforschung B . 75 (8): 721– 726. doi :10.1515/znb-2020-0102 . ISSN 1865-7117 . S2CID 222005297 .
^ a b c d e Ruzin, Eugen; Jakobi, Stephan; Dehnen, Stefanie (June 2008). "Syntheses, Structures and Reactivity of Novel Hydrates ofortho-Sulfidostannte Salts" . Zeitschrift für anorganische und allgemeine Chemie (in German). 634 (6– 7): 995– 1001. doi :10.1002/zaac.200800004 .
^ a b c d e Chen, Yao; Liu, Xing; Zhou, Jian; Zou, Hua-hong; Xiang, Bin (2021-02-15). "One-Dimensional Vanadium(III) Chalcogenidostannates Incorporating [V(tepa)] 3+ Complexes as Bridging Groups" . Inorganic Chemistry . 60 (4): 2127– 2132. doi :10.1021/acs.inorgchem.0c03484 . ISSN 0020-1669 . PMID 33503370 . S2CID 231765552 .
^ a b c Jia, Ding-Xian; Zhang, Yong; Dai, Jie; Zhu, Qin-Yu; Gu, Xiao-Mei (February 2004). "Solvothermal Syntheses and Characterization of Thiostannates [M(en)3]2Sn2S6 (M = Mn, Co, Zn), the Influence of Metal Ions on the Crystal Structure". Zeitschrift für anorganische und allgemeine Chemie . 630 (2): 313– 318. doi :10.1002/zaac.200300327 . ISSN 0044-2313 .
^ a b Fu, M. L.; Guo, G. C.; Liu, B.; Wu, A. Q.; Huang, J. S. (2005). "Two new thiostannates templated by transition metal complexes" . Chinese Journal of Inorganic Chemistry . 21 (1): 25– 29.
^ a b c Han, Jing-yu; Liu, Yun; Lu, Jia-lin; Tang, Chun-ying; Shen, Ya-li; Zhang, Yong; Jia, Ding-xian (July 2015). "Methanolothermal Syntheses, Crystal Structures and Optical Properties of Binuclear Transition Metal Complexes Involving the Bidentate S-Donor Ligand μ-Sn2S6" . Journal of Chemical Crystallography . 45 (7): 355– 362. doi :10.1007/s10870-015-0601-3 . ISSN 1074-1542 . S2CID 93060529 .
^ Han, Jingyu; Li, Shufen; Zhang, Limei; Zheng, Wei; Jiang, Wenqing; Jia, Dingxian (July 2018). "T3 supertetrahedral cluster [Mn 4 Sn 6 S 20 ] 8−: Solvothermal syntheses, crystal structures and photocatalytic properties of Mn(II) chalcogenidostannates" . Inorganic Chemistry Communications . 93 : 73– 77. doi :10.1016/j.inoche.2018.05.004 . S2CID 104109618 .
^ Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (April 2009). "The Inorganic-Organic Hybrid Compound {[Mn(trien)] 2 SnS 4 }·4H 2 O: Exhibiting a Hitherto Unknown Binding Mode of the [SnS 4 ] 4- Tetrahedron" . European Journal of Inorganic Chemistry . 2009 (12): 1575– 1577. doi :10.1002/ejic.200801093 .
^ a b c d Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2014-06-02). "Influence of the Synthesis Parameters onto Nucleation and Crystallization of Five New Tin–Sulfur Containing Compounds" . Inorganic Chemistry . 53 (11): 5619– 5630. doi :10.1021/ic500369m . ISSN 0020-1669 . PMID 24845345 .
^ Liu, Guang-Ning; Guo, Guo-Cong; Chen, Feng; Guo, Sheng-Ping; Jiang, Xiao-Ming; Yang, Chen; Wang, Ming-Sheng; Wu, Mei-Feng; Huang, Jin-Shun (2010). "Stabilization of (SnS4)4− anion by coordinating to [TM(π-conjugated-ligand)m]n+ complex: a chain-like thiostannate(iv) {[Mn(phen)]2(SnS4)}n·nH2O exhibiting an unprecedented link mode of the (SnS4)4− anion" . CrystEngComm . 12 (12): 4035. doi :10.1039/c0ce00292e . ISSN 1466-8033 .
^ a b Hilbert, Jessica; Pienack, Nicole; Lühmann, Henning; Näther, Christian; Bensch, Wolfgang (December 2016). "Transition Metal Complexes with Linkage to the Thiostannate Units Forced by Suitable Amine Molecules: Transition Metal Complexes with Linkage to the Thiostannate Units Forced by Suitable Amine Molecules" . Zeitschrift für anorganische und allgemeine Chemie . 642 (24): 1427– 1434. doi :10.1002/zaac.201600318 .
^ Pienack, Nicole; Möller, Karina; Näther, Christian; Bensch, Wolfgang (December 2007). "(1,4-dabH)2MnSnS4: The first thiostannate with integrated Mn2+ ions in an anionic chain structure" . Solid State Sciences . 9 (12): 1110– 1114. Bibcode :2007SSSci...9.1110P . doi :10.1016/j.solidstatesciences.2007.07.030 .
^ Kaib, Thomas; Haddadpour, Sima; Andersen, Hanne Flåten; Mayrhofer, Leonhard; Järvi, Tommi T.; Moseler, Michael; Möller, Kai-Christian; Dehnen, Stefanie (10 December 2013). "Quaternary Diamond-Like Chalcogenidometalate Networks as Efficient Anode Material in Lithium-Ion Batteries". Advanced Functional Materials . 23 (46): 5693– 5699. doi :10.1002/adfm.201301025 . S2CID 93236286 .
^ a b c Pienack, Nicole; Lehmann, Stefanie; Lühmann, Henning; El-Madani, Marzog; Näther, Christian; Bensch, Wolfgang (October 2008). "Solvothermal Syntheses, Crystal Structures and Selected Optical Properties of [ M (C 8 N 5 H 23 )] 2 Sn 2 S 6 ( M = Co, Fe, Ni; C 8 N 5 H 23 = tetraethylenepentamine)" . Zeitschrift für anorganische und allgemeine Chemie . 634 (12– 13): 2323– 2329. doi :10.1002/zaac.200800282 .
^ Zeisler, Christoph; Näther, Christian; Bensch, Wolfgang (2013). "A new synthetic approach to force bond formation between a transition metal complex and a thiostannate anion: solvothermal synthesis and crystal structure of [Co2(cyclam)2Sn2S6]·2H2O" . CrystEngComm . 15 (44): 8874. doi :10.1039/c3ce40976g . ISSN 1466-8033 .
^ a b Lühmann, Henning; Jeß, Inke; Näther, Christian; Bensch, Wolfgang (2020-02-28). "Crystal Structures and Selected Properties of Co II Containing Thiostannates prepared by a New Room Temperature Route" . Zeitschrift für anorganische und allgemeine Chemie . 646 (4): 234– 240. doi :10.1002/zaac.201900227 . ISSN 0044-2313 .
^ "Butianite" . www.mindat.org . Retrieved 2021-07-08 .
^ a b Benkada, Assma (2020-11-30). Synthesis of Thiostannates, Oxo-Thiostannates and Tin-Sulfides Applying Transition Metal Complexes Containing Macrocyclic Amine Molecules: Development of new synthetic routes to synthesize Sn-S and S-Sn-O compounds and investigation of their properties (Thesis).
^ Benkada, Assma; Poschmann, Michael; Näther, Christian; Bensch, Wolfgang (2019-02-28). "New Transition Metal Oxo-Thiostannate: Synthesis, Characterization, and Investigation of its Photocatalytic Properties: New Transition Metal Oxo-Thiostannate: Synthesis, Characterization, and Investigation of its Photocatalytic Properties" . Zeitschrift für anorganische und allgemeine Chemie . 645 (4): 433– 439. doi :10.1002/zaac.201800475 . S2CID 104376198 .
^ a b c Hilbert, Jessica; Näther, Christian; Weihrich, Richard; Bensch, Wolfgang (2016-08-15). "Room-Temperature Synthesis of Thiostannates from {[Ni(tren)] 2 [Sn 2 S 6 ]} n" . Inorganic Chemistry . 55 (16): 7859– 7865. doi :10.1021/acs.inorgchem.6b00625 . ISSN 0020-1669 . PMID 27479453 .
^ a b Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (April 2017). "Studies of the reactivity of {[Ni(tren)]2[Sn2S6]}: Synthesis and crystal structures of two new thiostannates prepared at room temperature" . Inorganica Chimica Acta . 459 : 29– 35. doi :10.1016/j.ica.2017.01.018 .
^ a b c d e f Hilbert, Jessica; Näther, Christian; Bensch, Wolfgang (2017-09-06). "Applying Ni(II) Amine Complexes and Sodium Thiostannate as Educts for the Generation of Thiostannates at Room Temperature" . Crystal Growth & Design . 17 (9): 4766– 4775. doi :10.1021/acs.cgd.7b00728 . ISSN 1528-7483 .
^ a b Hilbert, J.; Näther, C.; Bensch, W. (2015). "Utilization of mixtures of aromatic N-donor ligands of different coordination ability for the solvothermal synthesis of thiostannate containing molecules" . Dalton Transactions . 44 (25): 11542– 11550. doi :10.1039/C5DT01145K . ISSN 1477-9226 . PMID 26031892 .
^ a b Benkada, Assma; Näther, Christian; Bensch, Wolfgang (2020-08-31). "Room Temperature Synthesis of New Thiostannates by Slow Interdiffusion of Different Solvents" . Zeitschrift für anorganische und allgemeine Chemie . 646 (16): 1352– 1358. doi :10.1002/zaac.202000199 . ISSN 0044-2313 .
^ "Mohite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Kuramite Mineral Data" . webmineral.com . Retrieved 2021-07-08 .
^ Chen, X.-a; Wada, H; Sato, A (January 1999). "Preparation, crystal structure and electrical properties of Cu4SnS6" . Materials Research Bulletin . 34 (2): 239– 247. doi :10.1016/S0025-5408(99)00013-6 .
^ Pienack, Nicole; Näther, Christian; Bensch, Wolfgang (January 2007). "Two new copper thiostannates synthesised under solvothermal conditions: Crystal structures, spectroscopic and thermal properties of (DBUH)CuSnS3 and (1,4-dabH2)Cu2SnS4" . Solid State Sciences . 9 (1): 100– 107. Bibcode :2007SSSci...9..100P . doi :10.1016/j.solidstatesciences.2006.11.012 .
^ a b c Duan, Ruihuan; Lin, Hua; Wang, Yue; Zhou, Yuqiao; Wu, Liming (2020). "Non-centrosymmetric sulfides A 2 Ba 6 MnSn 4 S 16 (A = Li, Ag): syntheses, structures and properties" . Dalton Transactions . 49 (18): 5914– 5920. doi :10.1039/D0DT00894J . ISSN 1477-9226 . PMID 32314776 . S2CID 216046852 .
^ a b c Behrens, Malte; Ordolff, Marie-Eve; Näther, Christian; Bensch, Wolfgang; Becker, Klaus-Dieter; Guillot-Deudon, Catherine; Lafond, Alain; Cody, Jason A. (2010-09-20). "New Three-Dimensional Thiostannates Composed of Linked Cu 8 S 12 Clusters and the First Example of a Mixed-Metal Cu 7 SnS 12 Cluster" . Inorganic Chemistry . 49 (18): 8305– 8309. doi :10.1021/ic100688z . ISSN 0020-1669 . PMID 20726515 .
^ a b Lühmann, Henning; Jeß, Inke; Näther, Christian; Bensch, Wolfgang (2020-02-28). "Crystal Structures and Selected Properties of Co II Containing Thiostannates prepared by a New Room Temperature Route" . Zeitschrift für anorganische und allgemeine Chemie . 646 (4): 234– 240. doi :10.1002/zaac.201900227 . ISSN 0044-2313 . S2CID 214133328 .
^ a b Zhang, Xian; Wang, Qiuran; Ma, Zhimin; He, Jianqiao; Wang, Zhe; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang (2015-06-01). "Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu 8 Sn 6 S 24 ] z − Clusters" . Inorganic Chemistry . 54 (11): 5301– 5308. doi :10.1021/acs.inorgchem.5b00317 . ISSN 0020-1669 . PMID 25955506 .
^ "Stannite" . www.mindat.org . Retrieved 2021-07-08 .
^ "Mawsonite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Chatkalite" . www.mindat.org . Retrieved 2021-07-08 .
^ "Nekrasovite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Search Results – Access Structures" . www.ccdc.cam.ac.uk . Retrieved 2021-07-14 .
^ "Kësterite" . www.mindat.org . Retrieved 2021-07-08 .
^ "Stannoidite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Ge-Sn-Sulvanite" . www.mindat.org . Retrieved 2021-07-15 .
^ a b c d Liao, Ju Hsiou; Kanatzidis, Mercouri G. (1993-10-01). "Quaternary rubidium copper tin sulfides (Rb2Cu2SnS4, A2Cu2Sn2S6 (A = Na, K, Rb, Cs), A2Cu2Sn2Se6 (A = K, Rb), potassium gold tin sulfides, K2Au2SnS4, and K2Au2Sn2S6. Syntheses, structures, and properties of new solid-state chalcogenides based on tetrahedral [SnS4]4- units" . Chemistry of Materials . 5 (10): 1561– 1569. doi :10.1021/cm00034a029 . ISSN 0897-4756 .
^ a b Tian, Tian; Li, Zefen; Wang, Naizheng; Zhao, Sangen; Xu, Jiayue; Lin, Zheshuai; Mei, Dajiang (2021-06-16). "Cs 2 ZnSn 3 S 8 : A Sulfide Compound Realizes a Large Birefringence by Modulating the Dimensional Structure". Inorganic Chemistry . 60 (13): 9248– 9253. doi :10.1021/acs.inorgchem.1c01024 . PMID 34132527 . S2CID 235450479 .
^ Liu, Chuang; Mei, Dajiang; Cao, Wangzhu; Yang, Yi; Wu, Yuandong; Li, Guobao; Lin, Zheshuai (2019). "Mn-Based tin sulfide Sr 3 MnSn 2 S 8 with a wide band gap and strong nonlinear optical response" . Journal of Materials Chemistry C . 7 (5): 1146– 1150. doi :10.1039/C8TC05904G . ISSN 2050-7526 . S2CID 139249564 .
^ Teske, Chr. L. (January 1976). "Darstellung und Kristallstruktur von Cu2SrSnS4" . Zeitschrift für anorganische und allgemeine Chemie (in German). 419 (1): 67– 76. doi :10.1002/zaac.19764190112 . ISSN 0044-2313 .
^ a b Yang, Ya; Song, Miao; Zhang, Jie; Gao, Lihua; Wu, Xiaowen; Wu, Kui (2020). "Coordinated regulation on critical physiochemical performances activated from mixed tetrahedral anionic ligands in new series of Sr 6 A 4 M 4 S 16 (A = Ag, Cu; M = Ge, Sn) nonlinear optical materials" . Dalton Transactions . 49 (11): 3388– 3392. doi :10.1039/D0DT00432D . ISSN 1477-9226 . PMID 32104856 . S2CID 211535947 .
^ a b c d Zhang, Lingyun; Mei, Dajiang; Wu, Yuanwang; Shen, Chenfei; Hu, Wenxin; Zhang, Lujia; Li, Jinjin; Wu, Yuandong; He, Xiao (April 2019). "Syntheses, structures, optical properties, and electronic structures of Ba6Cu2GSn4S16 (G = Fe, Ni) and Sr6D2FeSn4S16 (D = Cu, Ag)" . Journal of Solid State Chemistry . 272 : 69– 77. Bibcode :2019JSSCh.272...69Z . doi :10.1016/j.jssc.2019.01.024 . S2CID 104331229 .
^ a b c d Zhou, Jian; Liu, Xing; An, Litao; Hu, Feilong; Yan, Wenbin; Zhang, Yunyan (2012-02-20). "Solvothermal Synthesis and Characterization of a Series of Lanthanide Thiostannates(IV): The First Examples of Inorganic–Organic Hybrid Cationic Lanthanide Thiostannates(IV)" . Inorganic Chemistry . 51 (4): 2283– 2290. doi :10.1021/ic2023083 . ISSN 0020-1669 . PMID 22280530 .
^ "Canfieldite" . www.mindat.org . Retrieved 2021-07-15 .
^ Yang, Ya; Wu, Kui; Zhang, Bingbing; Wu, Xiaowen; Lee, Ming-Hsien (2020-02-17). "One-Dimensional Double Chains in Sodium-Based Quaternary Chalcogenides Displaying Intriguing Red Emission and Large Optical Anisotropy" . Inorganic Chemistry . 59 (4): 2519– 2526. doi :10.1021/acs.inorgchem.9b03444 . ISSN 0020-1669 . PMID 31999111 . S2CID 210947790 .
^ "Agmantinite" . www.mindat.org . Retrieved 2021-07-08 .
^ "Pirquitasite" . www.mindat.org . Retrieved 2021-07-08 .
^ "Hocartite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Toyohaite" . www.mindat.org . Retrieved 2021-07-15 .
^ Xiong, Wei-Wei; Miao, Jianwei; Li, Pei-Zhou; Zhao, Yanli; Liu, Bin; Zhang, Qichun (2014). "[enH][Cu 2 AgSnS 4 ]: a quaternary layered sulfide based on Cu–Ag–Sn–S composition" . CrystEngComm . 16 (27): 5989– 5992. doi :10.1039/C4CE00740A . ISSN 1466-8033 .
^ Pienack, Nicole; Bensch, Wolfgang (August 2006). "The New Silver Thiostannate (1,4-dabH2)Ag2SnS4: Solvothermal Synthesis, Crystal Structure and Spectroscopic Properties" . Zeitschrift für anorganische und allgemeine Chemie (in German). 632 (10– 11): 1733– 1736. doi :10.1002/zaac.200600111 . ISSN 0044-2313 .
^ Zhang, Bo; Li, Jun; Du, Cheng-Feng; Feng, Mei-Ling; Huang, Xiao-Ying (2016-11-07). "[CH 3 NH 3 ] 2 Ag 4 Sn IV 2 Sn II S 8: An Open-Framework Mixed-Valent Chalcogenidostannate" . Inorganic Chemistry . 55 (21): 10855– 10858. doi :10.1021/acs.inorgchem.6b02317 . ISSN 0020-1669 . PMID 27768295 .
^ Zhang, Bo; Feng, Mei-Ling; Li, Jun; Hu, Qian-Qian; Qi, Xing-Hui; Huang, Xiao-Ying (March 2017). "Syntheses, Crystal Structures, and Optical and Photocatalytic Properties of Four Small-Amine-Molecule-Directed M–Sn–Q (M = Zn, Ag; Q = S, Se) Compounds" . Crystal Growth & Design . 17 (3): 1235– 1244. doi :10.1021/acs.cgd.6b01619 . ISSN 1528-7483 .
^ Li, Jian-Rong; Huang, Xiao-Ying (2011). "[(Me)2NH2]0.75[Ag1.25SnSe3]: A three-dimensionally microporous chalcogenide exhibiting framework flexibility upon ion-exchange" . Dalton Transactions . 40 (17): 4387– 4390. doi :10.1039/c0dt01381a . ISSN 1477-9226 . PMID 21225068 .
^ "Černýite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Petrukite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Sakuraiite" . www.mindat.org . Retrieved 2021-07-15 .
^ Teske, Chr. L. (October 1978). "Darstellung und Kristallstruktur von Gold-Barium-Thiostannat(lV), Au2,BaSnS4" . Zeitschrift für anorganische und allgemeine Chemie (in German). 445 (1): 193– 201. doi :10.1002/zaac.19784450124 . ISSN 0044-2313 .
^ Liu, Yan; Li, Yanhua; Zhao, Jie; Zhang, Renchun; Ji, Min; You, Zhonglu; An, Yonglin (January 2020). "Solvothermal syntheses, characterizations and semiconducting properties of four quaternary thioargentates Ba2AgInS4, Ba3Ag2Sn2S8, BaAg2MS4 (M = Sn, Ge)" . Journal of Alloys and Compounds . 815 : 152413. doi :10.1016/j.jallcom.2019.152413 . S2CID 204304414 .
^ a b Sheldrick, William S.; Wachhold, Michael (September 1998). "Chalcogenidometalates of the heavier Group 14 and 15 elements" . Coordination Chemistry Reviews . 176 (1): 211– 322. doi :10.1016/S0010-8545(98)00120-9 .
^ Luo, Xiaoyu; Li, Zhuang; Liang, Fei; Guo, Yangwu; Wu, Yicheng; Lin, Zheshuai; Yao, Jiyong (2019-05-20). "Synthesis, Structure, and Characterization of Two Mixed-Cation Quaternary Chalcogenides K 2 BaSnQ 4 (Q = S, Se)" . Inorganic Chemistry . 58 (10): 7118– 7125. doi :10.1021/acs.inorgchem.9b00967 . ISSN 0020-1669 . PMID 31067038 . S2CID 148568495 .
^ a b Duan, Rui-Huan; Li, Rui-An; Liu, Peng-Fei; Lin, Hua; Wang, Yue; Wu, Li-Ming (2018-09-05). "Modifying Disordered Sites with Rational Cations to Regulate Band-Gaps and Second Harmonic Generation Responses Markedly: Ba 6 Li 2 ZnSn 4 S 16 vs Ba 6 Ag 2 ZnSn 4 S 16 vs Ba 6 Li 2.67 Sn 4.33 S 16" . Crystal Growth & Design . 18 (9): 5609– 5616. doi :10.1021/acs.cgd.8b00927 . ISSN 1528-7483 . S2CID 105919832 .
^ Zhen, Ni; Wu, Kui; Wang, Ying; Li, Qiang; Gao, Wenhui; Hou, Dianwei; Yang, Zhihua; Jiang, Huaidong; Dong, Yongjun; Pan, Shilie (2016). "BaCdSnS 4 and Ba 3 CdSn 2 S 8: syntheses, structures, and non-linear optical and photoluminescence properties" . Dalton Transactions . 45 (26): 10681– 10688. doi :10.1039/C6DT01537A . ISSN 1477-9226 . PMID 27272926 .
^ a b Teske, Chr. L. (1985). "Darstellung und Kristallstruktur von Ba3CdSn2S8 mit einer Anmerkung über Ba6CdAg2Sn4S16" . Zeitschrift für anorganische und allgemeine Chemie (in German). 522 (3): 122– 130. doi :10.1002/zaac.19855220315 . ISSN 0044-2313 .
^ Pienack, Nicole; Lühmann, Henning; Näther, Christian; Bensch, Wolfgang (January 2016). "A New Solvothermal Synthetic Route Yields the New Thiostannate [La(dien) 3 ] 2 [Sn 2 S 6 ]Cl 2: The New Thiostannate [La(dien) 3 ] 2 [Sn 2 S 6 ]Cl 2" . Zeitschrift für anorganische und allgemeine Chemie . 642 (1): 25– 30. doi :10.1002/zaac.201500661 .
^ a b c d e f Tang, Chunying; Lu, Jialin; Han, Jingyu; Liu, Yun; Shen, Yali; Jia, Dingxian (October 2015). "Complexations of Ln(III) with SnS4H and Sn2S6: Solvothermal syntheses and characterizations of lanthanide coordination polymers with thiostannate and polyamine mixed ligands" . Journal of Solid State Chemistry . 230 : 118– 125. Bibcode :2015JSSCh.230..118T . doi :10.1016/j.jssc.2015.06.008 .
^ a b c Feng, Kai; Zhang, Xu; Yin, Wenlong; Shi, Youguo; Yao, Jiyong; Wu, Yicheng (2014-02-17). "New Quaternary Rare-Earth Chalcogenides Ba Ln Sn 2 Q 6 ( Ln = Ce, Pr, Nd, Q = S; Ln = Ce, Q = Se): Synthesis, Structure, and Magnetic Properties" . Inorganic Chemistry . 53 (4): 2248– 2253. doi :10.1021/ic402934m . ISSN 0020-1669 . PMID 24498849 .
^ a b c Zhao, Qianxin; Jia, Dingxian; Zhang, Yong; Song, Lifeng; Dai, Jie (April 2007). "First example of thiostannates with lanthanide-containing counter cations: Solvothermal synthesis, crystal structures and properties of thiostannates with neodymium(III) and gadolinium(III) complexes of bidentate and tridentate amino ligands" . Inorganica Chimica Acta . 360 (6): 1895– 1901. doi :10.1016/j.ica.2006.09.023 .
^ a b Lu, Xin-hua; Liang, Jing-jing; Zhao, Jing; Zhang, Yong; Jia, Ding-xian (April 2011). "Solvothermal Syntheses and Crystal Structures of Neodymium Thiostannates [Nd(dien)3]2[(Sn2S6)Cl2] and [Nd(dien)3]2[(Sn2S6)(SH)2]" . Journal of Chemical Crystallography . 41 (4): 557– 562. doi :10.1007/s10870-010-9921-5 . ISSN 1074-1542 . S2CID 95550419 .
^ a b c Chen, Rui-hong; Wang, Fang; Tang, Chun-ying; Zhang, Yong; Jia, Ding-xian (June 2013). "Solvothermal Syntheses and Crystal Structures of Hexachalcogenidodistannates with Europium Complexes of Different Ethylene Polyamine Ligands" . Journal of Chemical Crystallography . 43 (6): 319– 324. doi :10.1007/s10870-013-0423-0 . ISSN 1074-1542 . S2CID 97917911 .
^ a b c d Jin, Qinyan; Chen, Jiangfang; Pan, Yingli; Zhang, Yong; Jia, Dingxian (2010-05-10). "Solvothermal syntheses and optical properties of hexathiostannates containing samarium(III) complexes with different ethylene polyamines" . Journal of Coordination Chemistry . 63 (9): 1492– 1503. doi :10.1080/00958972.2010.482666 . ISSN 0095-8972 . S2CID 98109293 .
^ a b c d e Chen, Ruihong; Wang, Fang; Tang, Chunying; Zhang, Yong; Jia, Dingxian (2013-06-17). "Heterometallic Clusters [CuSn 3 S 9 ] 5− and [Cu 6 Sn 6 S 20 ] 10−: Solvothermal Synthesis and Characterization of 4f-3d Thiostannates" . Chemistry – A European Journal . 19 (25): 8199– 8206. doi :10.1002/chem.201300044 . PMID 23616420 .
^ a b Tan, Xiao-Feng; Liu, Xing; Zhou, Jian; Zhu, Ligang; Zhao, Rongqing; Huang, Qian (January 2016). "Two Quaternary Copper Thiostannates with Lanthanum(III) Complexes" . Journal of Cluster Science . 27 (1): 257– 265. doi :10.1007/s10876-015-0927-1 . ISSN 1040-7278 . S2CID 93262656 .
^ Llanos, Jaime; Mujica, Carlos; Sánchez, Vı́ctor; Peña, Octavio (June 2003). "Physical and optical properties of the quaternary sulfides SrCu2MS4 and EuCu2MS4 (M=Ge and Sn)" . Journal of Solid State Chemistry . 173 (1): 78– 82. Bibcode :2003JSSCh.173...78L . doi :10.1016/S0022-4596(03)00093-8 .
^ Aitken, Jennifer A.; Lekse, Jonathan W.; Yao, Jin-Lei; Quinones, Rosalynn (January 2009). "Synthesis, structure and physicochemical characterization of a noncentrosymmetric, quaternary thiostannate: EuCu2SnS4" . Journal of Solid State Chemistry . 182 (1): 141– 146. Bibcode :2009JSSCh.182..141A . doi :10.1016/j.jssc.2008.09.022 .
^ a b c Han, Jingyu; Liu, Yun; Lu, Jialin; Tang, Chunying; Wang, Fang; Shen, Yali; Zhang, Yong; Jia, Dingxian (July 2015). "Heterometallic sulfide cluster [Ag6Sn6S20]10−: Solvothermal syntheses and characterizations of silver thiostannates with lanthanide complex counter cations" . Inorganic Chemistry Communications . 57 : 18– 21. doi :10.1016/j.inoche.2015.04.018 .
^ "Kiddcreekite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Bowlesite" . www.mindat.org . Retrieved 2021-07-15 .
^ a b c d Teske, Christoph Ludwig; Terraschke, Huayna; Mangelsen, Sebastian; Bensch, Wolfgang (2020-11-15). "Re-investigation of Barium-Gold(I)-Tetra-Thiostannate(IV), Ba[Au 2 SnS 4 ], with Short Au I ···Au I Separation Showing Luminescence Properties" . Zeitschrift für anorganische und allgemeine Chemie . 646 (21): 1716– 1721. doi :10.1002/zaac.202000306 . ISSN 0044-2313 .
^ Reshak, A.H.; Azam, Sikander (November 2014). "Linear and nonlinear optical properties of α-K2Hg3Ge2S8 and α-K2Hg3Sn2S8 compounds" . Optical Materials . 37 : 97– 103. Bibcode :2014OptMa..37...97R . doi :10.1016/j.optmat.2014.05.006 .
^ "Velikite" . www.mindat.org . Retrieved 2021-07-08 .
^ a b Guo, Yangwu; Liang, Fei; Li, Zhuang; Xing, Wenhao; Lin, Zhe-shuai; Yao, Jiyong; Mar, Arthur; Wu, Yicheng (2019-08-05). "AHgSnQ 4 (A = Sr, Ba; Q = S, Se): A Series of Hg-Based Infrared Nonlinear-Optical Materials with Strong Second-Harmonic-Generation Response and Good Phase Matchability" . Inorganic Chemistry . 58 (15): 10390– 10398. doi :10.1021/acs.inorgchem.9b01572 . ISSN 0020-1669 . PMID 31342744 . S2CID 198494837 .
^ Xing, Wenhao; Tang, Chunlan; Wang, Naizheng; Li, Chunxiao; Li, Zhuang; Wu, Jieyun; Lin, Zheshuai; Yao, Jiyong; Yin, Wenlong; Kang, Bin (2020-12-21). "EuHgGeSe 4 and EuHgSnS 4: Two Quaternary Eu-Based Infrared Nonlinear Optical Materials with Strong Second-Harmonic-Generation Responses" . Inorganic Chemistry . 59 (24): 18452– 18460. doi :10.1021/acs.inorgchem.0c03176 . ISSN 0020-1669 . PMID 33256399 . S2CID 227245551 .
^ "Coiraite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Franckeite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Ramosite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Cylindrite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Incaite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Plumbostannite" . www.mindat.org . Retrieved 2021-07-15 .
^ Abudurusuli, Ailijiang; Ding, Hanqin; Wu, Kui (November 2017). "Synthesis and characterization of two lead-containing metal chalcogenides: Ba5Pb2Sn3S13 and Ba6PbSn3Se13" . Journal of Solid State Chemistry . 255 : 133– 138. Bibcode :2017JSSCh.255..133A . doi :10.1016/j.jssc.2017.08.019 .
^ "Abramovite" . www.mindat.org . Retrieved 2021-07-15 .
^ "Lévyclaudite" . www.mindat.org . Retrieved 2021-07-15 .