Theta-subsumptionTheta-subsumption (θ-subsumption, or just subsumption) is a decidable relation between two first-order clauses that guarantees that one clause logically entails the other. It was first introduced by John Alan Robinson in 1965 and has become a fundamental notion in inductive logic programming. Deciding whether a given clause θ-subsumes another is an NP-complete problem. DefinitionA clause, that is, a disjunction of first-order literals, can be considered as a set containing all its disjuncts. With this convention, a clause θ-subsumes a clause if there is a substitution such that the clause obtained by applying to is a subset of .[1] Propertiesθ-subsumption is a weaker relation than logical entailment, that is, whenever a clause θ-subsumes a clause , then logically entails . However, the converse is not true: A clause can logically entail another clause, but not θ-subsume it. θ-subsumption is decidable; more precisely, the problem of whether one clause θ-subsumes another is NP-complete in the length of the clauses. This is still true when restricting the setting to pairs of Horn clauses.[2] As a binary relation among Horn clauses, θ-subsumption is reflexive and transitive. It therefore defines a preorder. It is not antisymmetric, since different clauses can be syntactic variants of each other. However, in every equivalence class of clauses that mutually θ-subsume each other, there is a unique shortest clause up to variable renaming, which can be effectively computed. The class of quotients with respect to this equivalence relation is a complete lattice, which has both infinite ascending and infinite descending chains. A subset of this lattice is known as a refinement graph.[3] Historyθ-subsumption was first introduced by J. Alan Robinson in 1965 in the context of resolution,[4] and was first applied to inductive logic programming by Gordon Plotkin in 1970 for finding and reducing least general generalisations of sets of clauses.[5] In 1977, Lewis D. Baxter proves that θ-subsumption is NP-complete,[6] and the 1979 seminal work on NP-complete problems, Computers and Intractability, includes it among its list of NP-complete problems.[2] ApplicationsTheorem provers based on the resolution or superposition calculus use θ-subsumption to prune redundant clauses.[7] In addition, θ-subsumption is the most prominent notion of entailment used in inductive logic programming, where it is the fundamental tool to determine whether one clause is a specialisation or a generalisation of another.[1] It is further used to test whether a clause covers an example, and to determine whether a given pair of clauses is redundant.[2] Notes
References
|