According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree.[1][2]
Edward A. Guggenheim used the phrase "Principle of Corresponding States" in an oft-cited paper to describe the phenomenon where different systems have very similar behaviors when near a critical point.[4]
There are many examples of non-ideal gas models which satisfy this theorem, such as the van der Waals model, the Dieterici model, and so on, that can be found on the page on real gases.
Compressibility factor at the critical point
The compressibility factor at the critical point, which is defined as , where the subscript indicates physical quantities measured at the critical point, is predicted to be a constant independent of substance by many equations of state.
The table below for a selection of gases uses the following conventions:
Properties of Natural Gases. Includes a chart of compressibility factors versus reduced pressure and reduced temperature (on last page of the PDF document)