Class of chemical compounds
Thallides are compounds containing anions composed of thallium . There are several thallium atoms in a cluster , and it does not occur as a single Tl− in thallides.[ 1] [ 2] They are a subclass of trielides,[ 2] which also includes gallides and indides .[ 3] A more general classification is polar intermetallics, as clusters contain delocalized multicentre bonds.[ 4] Thallides were discovered by Eduard Zintl in 1932.[ 5]
Mixed anion compounds with thallides include halides (bromides and chlorides ),[ 6] oxides ,[ 7] and tetrelates (silicate , germanate ).[ 8]
Production
Thallide compounds can be produced by melting metals together in a tantalum crucible under an inert argon atmosphere.[ 3] However if arsenic is included in the mix, it can react with the crucible wall.[ 9]
A low temperature production route, is to dissolve an alkali metal in liquid ammonia , and use that to reduce a thallium salt, like thallium iodide .[ 10]
Properties
Thallide compounds are dense, dense to X-rays and usually metallic grey or black in appearance.
Thallide clusters mostly do not follow Wade-Mingos rules or the Zintl–Klemm concept , as they have too small a negative charge. They can be called "hypoelectronic".[ 11]
Reactions
In liquid ammonia , oxidation occurs yielding metal amides , and thallium metal.[ 2]
Thallides react with water and air.[ 2]
List
formula
system
space group
unit cell
volume
density
comment
ref
LiTl
cubic
Pm 3 m
a=3.43
melts at 508 °C
[ 12]
Li2 Tl
orthorhombic
Cmcm
a=4.741 b=10.023 c=4.786
decomposes at 381 °C
[ 5] [ 12]
Li5 Tl2
R 3 m
a=4.716 c=20.399
melts at 448 °C
[ 5] [ 12]
Li3 Tl
cubic
Fm 3m
a=6.67
melts at 447 °C
[ 5] [ 12]
Li22 Tl5 (Li4 Tl)
cubic
F 4 3m
a=20.003
[ 5] [ 12]
NaTl
cubic
Fd 3 m
3D diamond structure mesh for Tl; melts at 305 °C
[ 2] [ 10] [ 12]
NaTl
tetragonal
I 41 /amd
a=5.2341 c=7.5290 Z=4
206.26
grey;
[ 10] [ 12]
Na2 Tl
orthorhombic
C 2221
a=13.9350 b=8.8797 c=11.6927
[Tl4 ]8– tetrahedra; melts at 154 °C
[ 2] [ 12]
NaTl2
decomposes at 154 °C
[ 12]
Na6 Tl
cubic
F 4 3m
a=24.154
melts at 77.4
[ 12]
KTl
orthorhombic
Cmca
a=15.239 b=15.069 c=8.137
[Tl6 ]6– Compressed octahedra ; melts incongruently at 268 °C
[ 2] [ 12]
K5 Tl8
melts at 273 °C
[ 12]
K10 Tl7
monoclinic
P 21 /c
a = 10.132 b = 22.323 c = 13.376 β = 93.14° Z=4
[Tl7 ]7– pentagonal bipyramid
[ 2]
K10 Tl6 O2
[Tl6 ]6–
[ 2]
K8 Tl11
rhombohedral
R 3 c
a=9.991 c=5.084
[Tl11 ]7– pentacapped trigonal prism ; melts at 320 °C
[ 2] [ 12]
K49 Tl108
Pm 3
a = 17.28.7 Z=1
[ 13]
K5 Tl17
orthorhombic
Cccm
[ 5]
K6 Tl17
orthorhombic
Cccm
a = 16.625 b = 23.594 c = 15.369 Z = 8
6028
8.173
@22 °C; metallic; ρ270 = 22.6 μΩ·cm, α = 0.0023 K-1
[ 14]
K10 Tl6 O2
orthorhombic
Cmcm
a =8.3755 b =32.102 c =8.8634 Z=4
2383.1
4.597
dark grey
[ 7]
Na7 KTl4
orthorhombic
Pbam
a= 16.2860 c =11.2771 Z =8
2991.1
4.519
[Tr4 ]8−
[ 15]
Na9 K16 Tl~25
[ 2]
[Et4 N]2 [{Tl(Fe(CO)4 )2 }2 ]
[ 16]
[(PPh2 )2 N]2 [Tl2 Fe6 (CO)24 ]
monoclinic
P 21 /c
a =17.120 b =50.71 c =16.785 β =116.90°
[ 16]
[Et4 N]4 [Tl4 Fe8 (CO)30 ]
[ 16]
[Et4 N]6 [Tl6 Fe10 (CO)36 ]
[ 16]
K8 ZnTl10
band gap 0.17 eV
[ 3]
K8 GaTl10
tetragonal
P 4/nnc
a =10.1858 c =13.6371 Z =2
1414.9
5.695
[ 3]
K49 Ga2 Tl108
[ 3]
Rb8 Tl11
[Tl11 ]7– pentacapped trigonal prism
[ 2]
Rb15 Tl27
P 6 2m
[ 17]
Rb17 Tl41
hexagonal
Fd 3 m
a = 10.3248 c = 17.558
[ 5]
Rb10 Tl6 O2
orthorhombic
Cmcm
a =8.7176 b =33.2934 = 9.1242
2648.19
5.300
dark grey; [Tl6 ]6–
[ 2] [ 7]
Na7 RbTl4
orthorhombic
Pbam
a=16.3584 b=16.3581 c=11.3345 Z=8
3033.0
4.660
@123K [Tl4 ]8− tetrahedra
[ 18]
K4 Rb4 Tl11 Cl0.1
rhombohedral
R 3 c
a =10.0948 c =51.027 Z=6
4503.3
6.087
[ 6]
Rb8 GaTl10
tetragonal
P 4/nnc
a =10.4714 c =14.0007 Z =2
1535.2
6.051
[ 17]
Rb49 Ga2 Tl108
[ 3]
Sr3 Tl5
orthorhombic
Cmcm
a = 10.604 b = 8.675 c = 10.985 Z = 4
1010.5
8.445
silvery, brittle; [Tl5 ]6– square pyramidal clusters
[ 4]
YMgTl
hexagonal
P 62m
a=7.505 c=4.5985 Z=3
7.05
metallic; black powder
[ 19]
Pd3 Tl
tetragonal
I 4/mmm
a =4.10659 c =15.3028 Z = 4
258.07
Palladothallite
[ 20]
SrPdTl2
orthorhombic
Cmcm
a = 4.486 b = 10.991 c = 8.154 Z = 4
[ 21]
Na13 (Cd~0.70 Tl~0.30 )27
cubic
Im 3
a ≃ 15.92 Z = 4
Tl from 0.24 to 0.33
[ 22]
K14 Cd9 Tl21
hexagonal
P 2m
a = 9.884 c =17.173 Z = 2
[ 23]
Na9 K16 Tl18 Cd3
hexagonal
P 63 /mmc
a = 11.136 c = 29.352 Z=2
[ 24]
Rb5 Cd2 Tl11
orthorhombic
Amm 2
a = 5.5999 b = 17.603 c = 12.896 Z = 2
[ 25]
Na12 K18 In53 Tl7
R 3m
a =16.846 c =43.339 Z=4
[ 26]
Na6 TlSb4
monoclinic
C 2/c
15.154 b = 10.401 c = 17.413 β = 113.57° Z = 8
metallic
[ 27]
K6 Tl2 Sb3
monoclinic
C 2/c
a = 9.951 b = 17.137 c = 19.640 β = 104.26° Z = 8
[ 27] [ 28]
CsTl
orthorhombic
Fddd
[Tl6 ]6–
[ 2]
Cs3.45 K3.55 Tl7
tetragonal
I 41 /a
a = 13.6177 c = 25.5573 Z = 8
4739.3
5.681
[Tl7 ]7−
[ 2]
Cs7.29 K5.71 Tl13
monoclinic
C 2/c
a = 30.7792 b = 11.000 c = 14.0291 β = 112.676° Z = 4
4382.7
5.835
[Tl7 ]7− and [Tl6 ]6–
[ 2]
K3.826 Cs4.174 Tl11
[ 2]
Cs8 Tl11
[Tl11 ]7– pentacapped trigonal prism
[ 2]
Cs15 Tl27
hexagonal
P 6 2m
[ 5] [ 17]
Cs4 Tl2 O
trigonal
R 3 m
a = 11.986 c = 20.370 Z = 9
2534.3
5.640
silvery black; stable to 523 °C; decomposes in air
[ 29]
Cs18 Tl8 O6
[ 29]
Cs10 Tl6 SiO4
monoclinic
P 21 /c
a =18.9121 b =11.4386 c =14.8081 β =90.029°
[Tl6 ]6–
[ 2] [ 8]
Cs10 Tl6 GeO4
monoclinic
P 21 /c
a =19.034 b =11.4883 c =14.8633 β =90.033°
[Tl6 ]6–
[ 2] [ 8]
Cs10 Tl6 SnO3
orthorhombic
Pnma
a =14.8908Å b =19.052 c =11.5855
[Tl6 ]6–
[ 2] [ 8]
Rb14 CsTl27
hexagonal
[ 17]
Cs8 GaTl10
tetragonal
P 4/nnc
a =10.777 c =14.354 Z =2
1667.3
6.328
[ 3]
Cs5 Cd2 Tl11
orthorhombic
Amm 2
a = 5.6107 b = 18.090 c = 13.203 Z = 2
[ 25]
Cs8 Tl11 Pd0.84
rhombohedral
R 3 c
a = 10.6l0 c = 54.683 Z = 6
[ 30]
Cs8 Tl11 Cl0.8
rhombohedral
R 3 c
a =10.4691 c =53.297 Z = 6
5058.8
6.578
[ 6]
Cs8 Tl11 Br0.9
rhombohedral
R 3 c
a =10.5608 c =53.401 Z = 6
5157.9
6.539
[ 6]
Cs5 Rb3 Tl11 Cl0.5
rhombohedral
R 3 c
a =10.3791 c =52.437 Z = 6
4892.0
6.502
[ 6]
Cs5.7 K2.3 Tl11 Cl0.6
rhombohedral
R 3 c
a =10.3291 c =51.909 Z = 6
4796.3
6.469
[ 6]
BaTl2
hexagonal
P 63 /mmc
[ 31]
BaTl4
monoclinic
C 2/m
a = 12.408 b = 5.351 c = 10.383 β = 116.00° Z = 4
519.6
silvery
[ 32]
LaMgTl
hexagonal
P 62m
a=7.813 c=4.7784 Z=3
7.25
metallic; black powder
[ 19]
CeMgTl
hexagonal
P 62m
a=7.741 c=4.7375 Z=3
7.47
metallic; black powder
[ 19]
PrMgTl
hexagonal
P 62m
a=7.702 c=4.7150 Z=3
242.9
7.60
metallic; black powder
[ 19]
NdMgTl
hexagonal
P 62m
a=7.666 c=4.6945 Z=3
242.9
7.74
metallic; black powder
[ 19]
SmMgTl
hexagonal
P 62m
a=7.603 c=4.6593 Z=3
8.10
metallic; black powder
[ 19]
EuTl2
[ 33]
EuPdTl2
orthorhombic
Cmcm
a=4.466 b=10.767 c=8.120 Z=4
3905
11.35
silvery metallic
[ 33]
GdMgTl
hexagonal
P 62m
a=7.556 c=4.6312 Z=3
229.9
7.74
metallic; black powder
[ 19]
TbMgTl
hexagonal
P 62m
a=7.518 c=4.6088 Z=3
226.7
8.52
metallic; black powder
[ 19]
DyMgTl
hexagonal
P 62m
a=7.495 c=4.5932 Z=3
224.1
8.69
metallic; black powder
[ 19]
HoMgTl
hexagonal
P 62m
a=7.471 c=4.5835 Z=3
metallic; black powder
[ 19]
ErMgTl
hexagonal
P 62m
a=7.449 c=4.5715 Z=3
metallic; black powder
[ 19]
TmMgTl
hexagonal
P 62m
a=7.432 c=4.5541 Z=3
metallic; black powder
[ 19]
LuMgTl
hexagonal
P 62m
a=7.402 c=4.5400 Z=3
metallic; black powder
[ 19]
K5 TaAs4 Tl2
orthorhombic
Pnma
[ 34]
Rb5 TaAs4 Tl2
orthorhombic
Pnma
a = 19.196 b = 11.104 c = 7.894 Z = 4
spiro at Ta
[ 34]
SrPtTl2
orthorhombic
Cmcm
a = 4.491 b = 10.990 c = 8.140 Z = 4
[ 21]
Na12 K38 Tl48 Au2
Tl7 and Tl9 cluster + auride
[ 2]
K3 Au5 Tl
orthorhombic
Imma
a = 5.595 b =19.706 c =8.430 Z = 4
[ 9]
Rb2 Au3 Tl
orthorhombic
Pmma
a = 5.660 b = 6.741 c = 9.045 Z = 4
[ 9]
BaAuTl3
tetragonal
I 4/mmm
a = 4.8604 c = 12.180 Z = 2
[ 35]
Ba2 AuTl7
orthorhombic
Pmma
a =21.919 b =5.193 c =10.447
[ 36]
BaAu0.40 Tl1.60
orthorhombic
Imma
a = 5.140 b = 8.317 c = 8.809 Z = 4
[ 31]
BaHg0.80 Tl3.20
monoclinic
C 2/m
a=12.230 b=5.234 c=10.379 β = 115.272
600.3
10.523
silvery
[ 32]
References
^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements" . Relativistic Methods for Chemists . Challenges and Advances in Computational Chemistry and Physics. Vol. 10. Springer Netherlands. p. 73. doi :10.1007/978-1-4020-9975-5_2 . ISBN 978-1-4020-9975-5 .
^ a b c d e f g h i j k l m n o p q r s t u v Schwinghammer, Vanessa F.; Gärtner, Stefanie (28 February 2024). "[Tl 7 ] 7– Clusters in Mixed Alkali Metal Thallides Cs 7.29 K 5.71 Tl 13 and Cs 3.45 K 3.55 Tl 7" . Inorganic Chemistry . doi :10.1021/acs.inorgchem.3c04034 . PMC 11523231 . PMID 38416695 .
^ a b c d e f g Lehmann, Bernard; Röhr, Caroline (2022-12-13). "Endohedral Ten-Vertex Clusters [Ga@Tl 10 ] 8− in the Mixed Trielides A 8 GaTl 10 ( A =K, Rb, Cs)" . Zeitschrift für anorganische und allgemeine Chemie . 648 (23). doi :10.1002/zaac.202200204 . ISSN 0044-2313 .
^ a b Li, DongXu; Luo, GengGeng; Xiao, ZiJing; Dai, JingCao (January 2012). "Synthesis, structure and bonding of the hypoelectronic cluster compound Sr3Tl5" . Science China Chemistry . 55 (1): 131–137. doi :10.1007/s11426-011-4382-z . ISSN 1674-7291 .
^ a b c d e f g h Gärtner, Stefanie (2020-11-07). "Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides" . Crystals . 10 (11): 1013. doi :10.3390/cryst10111013 . ISSN 2073-4352 .
^ a b c d e f Gärtner, Stefanie; Tiefenthaler, Susanne; Korber, Nikolaus; Stempfhuber, Sabine; Hischa, Birgit (2018-08-10). "Structural Chemistry of Halide including Thallides A8Tl11X1−n (A = K, Rb, Cs; X = Cl, Br; n = 0.1–0.9)" . Crystals . 8 (8): 319. doi :10.3390/cryst8080319 . ISSN 2073-4352 .
^ a b c Karpov, Andrey; Jansen, Martin (2006). "A10Tl6O2(A = K, Rb) cluster compounds combining structural features of thallium cluster anions and of alkali metal sub-oxides" . Chemical Communications (16): 1706–1708. doi :10.1039/b601802e . ISSN 1359-7345 . PMID 16609778 .
^ a b c d Saltykov, Vyacheslav; Nuss, Jürgen; Jansen, Martin (July 2011). "Cs 10 Tl 6 SiO 4 , Cs 10 Tl 6 GeO 4 , and Cs 10 Tl 6 SnO 3 – First Oxotetrelate Thallides, Double Salts Containing "Hypoelectronic" [Tl 6 ] 6– Clusters" . Zeitschrift für anorganische und allgemeine Chemie . 637 (9): 1163–1168. doi :10.1002/zaac.201000358 . ISSN 0044-2313 .
^ a b c Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; Corbett, John D. (2009-07-20). "Gold Tetrahedra as Building Blocks in K 3 Au 5 Tr (Tr = In, Tl) and Rb 2 Au 3 Tl and in Other Compounds: A Broad Group of Electron-Poor Intermetallic Phases" . Inorganic Chemistry . 48 (14): 6573–6583. doi :10.1021/ic9004856 . ISSN 0020-1669 . PMID 20507109 .
^ a b c Tiefenthaler, Susanne; Korber, Nikolaus; Gärtner, Stefanie (2019-04-25). "Synthesis of the Tetragonal Phase of Zintl's NaTl and Its Structure Determination from Powder Diffraction Data" . Materials . 12 (8): 1356. Bibcode :2019Mate...12.1356T . doi :10.3390/ma12081356 . ISSN 1996-1944 . PMC 6515420 . PMID 31027267 .
^ Wang, Fei; Wedig, Ulrich; Prasad, Dasari L. V. K.; Jansen, Martin (5 December 2012). "Deciphering the Chemical Bonding in Anionic Thallium Clusters". Journal of the American Chemical Society . 134 (48): 19884–19894. doi :10.1021/ja309852f . PMID 23151038 .
^ a b c d e f g h i j k l m Sangster, James (February 2018). "The Systems Li-Tl, Na-Tl and K-Tl" . Journal of Phase Equilibria and Diffusion . 39 (1): 74–86. doi :10.1007/s11669-017-0609-9 . ISSN 1547-7037 .
^ Cordier, Gerhard; Müller, Volker (1993-08-01). "Darstellung und Kristallstruktur von K 49 Tl 108 / Preparation and Crystal Structure of K 49 T1 108" . Zeitschrift für Naturforschung B . 48 (8): 1035–1040. doi :10.1515/znb-1993-0802 . ISSN 1865-7117 .
^ Kaskel, Stefan; Dong, Zhen-Chao; Klem, Michael T.; Corbett, John D. (2003-03-01). "Synthesis and Structure of the Metallic K 6 Tl 17 : A Layered Tetrahedral Star Structure Related to That of Cr 3 Si" . Inorganic Chemistry . 42 (6): 1835–1841. doi :10.1021/ic020667h . ISSN 0020-1669 . PMID 12639115 .
^ Janesch, Melissa; Schwinghammer, Vanessa F.; Shenderovich, Ilya G.; Gärtner, Stefanie (2023-11-02). "Synthesis and characterization of ternary trielides Na 7 K Tr 4 [ Tr =In or Tl] including [ Tr 4 ] 8− Tetrahedra" . Zeitschrift für anorganische und allgemeine Chemie . 649 (21). doi :10.1002/zaac.202300112 . ISSN 0044-2313 .
^ a b c d Whitmire, Kenton H.; Guzman-Jimenez, Ilse Y.; Saillard, Jean-Yves; Kahlal, Samia (December 2000). "Synthesis, characterization, structural and theoretical analysis of a series of electron deficient, monomeric thallium iron carbonylate isostructural and isolobal to diiron nonacarbonyl" . Journal of Organometallic Chemistry . 614–615: 243–254. doi :10.1016/S0022-328X(00)00629-X .
^ a b c d Dong, Zhen-Chao; Corbett, John D. (1996-01-01). "A 15 Tl 27 (A = Rb, Cs): A Structural Type Containing Both Isolated Clusters and Condensed Layers Based on the Tl 11 Fragment. Syntheses, Structure, Properties, and Band Structure" . Inorganic Chemistry . 35 (6): 1444–1450. doi :10.1021/ic951086d . ISSN 0020-1669 . PMID 11666357 .
^ Schwinghammer, Vanessa F.; Janesch, Melissa; Korber, Nikolaus; Gärtner, Stefanie (2022-12-27). "Na 7 RbTl 4 – A New Ternary Zintl Phase Containing [Tl 4 ] 8− Tetrahedra" . Zeitschrift für anorganische und allgemeine Chemie . 648 (24). doi :10.1002/zaac.202200332 . ISSN 0044-2313 .
^ a b c d e f g h i j k l m Kraft, Rainer; Pöttgen, Rainer (2005-03-01). "Ternary Thallides REMgTl (Re = Y, La – Nd, Sm, Gd – Tm, Lu)" . Zeitschrift für Naturforschung B . 60 (3): 265–270. doi :10.1515/znb-2005-0305 . ISSN 1865-7117 .
^ Grokhovskaya, Tatiana L.; Vymazalová, Anna; Laufek, František; Stanley, Chris J.; Borisovskiy, Sergey Ye. (2021-11-01). "Palladothallite, Pd3Tl, a new mineral from the Monchetundra layered intrusion, Kola Peninsula, Russia" . The Canadian Mineralogist . 59 (6): 1821–1832. Bibcode :2021CaMin..59.1821G . doi :10.3749/canmin.2100002 . ISSN 1499-1276 .
^ a b Liu, Shengfeng; Corbett, John D. (2003-08-01). "Synthesis, Structure, and Properties of the New Intermetallic Compounds SrPdTl 2 and SrPtTl 2" . Inorganic Chemistry . 42 (16): 4898–4901. doi :10.1021/ic030089k . ISSN 0020-1669 . PMID 12895113 .
^ Li, Bin; Corbett, John D. (2004-06-01). "Synthesis, Structure, and Characterization of a Cubic Thallium Cluster Phase of the Bergman Type, Na 13 (Cd ~ 0.70 Tl ~ 0.30 ) 27" . Inorganic Chemistry . 43 (12): 3582–3587. doi :10.1021/ic0400033 . ISSN 0020-1669 . PMID 15180410 .
^ Tillard-Charbonnel, Monique; Chahine, Abdelkrim; Belin, Claude; Rousseau, Roger; Canadell, Enric; Rousseau, R. (May 1997). "Structure and Chemical Bonding in K 14 Cd 9 Tl 21 , a Compound Containing Both Isolated Tl 7- 11 Clusters and 2 [Cd 9 Tl 7- 10 ] Metallic Layers" . Chemistry – A European Journal . 3 (5): 799–806. doi :10.1002/chem.19970030520 . ISSN 0947-6539 .
^ Huang, DaPing; Corbett, John D. (1999-01-01). "Na 9 K 16 Tl 18 Cd 3 : A Novel Phase Containing Tl 8 Cd 3 10 - and Tl 5 7 - Clusters 1" . Inorganic Chemistry . 38 (2): 316–320. doi :10.1021/ic9807792 . ISSN 0020-1669 .
^ a b Kaskel, Stefan; Corbett, John D. (2000-07-01). "Synthesis, Structure, and Bonding of A 5 Cd 2 Tl 11 , A = Cs, Rb. Naked Pentagonal Antiprismatic Columns Centered by Cadmium" . Inorganic Chemistry . 39 (14): 3086–3091. doi :10.1021/ic000061y . ISSN 0020-1669 . PMID 11196905 .
^ Flot, David; Tillard-Charbonnel, Monique; Belin, Claude (1998). "Na12K18In53Tl7: a novel mixed In/Tl phase hierarchically related to the C15 Friauf–Laves structure type. Synthesis, crystal and electronic structure" . New Journal of Chemistry . 22 (6): 591–598. doi :10.1039/a708761f .
^ a b Li, Bin; Chi, Lisheng; Corbett, John D. (2003-05-01). "Na 6 TlSb 4 : Synthesis, Structure, and Bonding. An Electron-Rich Salt with a Chain Conformation and a Tl−Tl Bond Length Determined by the Cation" . Inorganic Chemistry . 42 (9): 3036–3042. doi :10.1021/ic020728b . ISSN 0020-1669 . PMID 12716198 .
^ Chi, Lisheng; Corbett, John D. (2001-06-01). "K 6 Tl 2 Sb 3 , A Zintl Phase with a Novel Heteroatomic [Tl 4 Sb 6 12 - ] Chain 1" . Inorganic Chemistry . 40 (12): 2705–2708. doi :10.1021/ic0014134 . ISSN 0020-1669 . PMID 11375683 .
^ a b Saltykov, Vyacheslav; Nuss, Jürgen; Wedig, Ulrich; Jansen, Martin (March 2011). "Regular [Tl 6 ] 6– Cluster in Cs 4 Tl 2 O Exhibiting Closed-Shell Configuration and Energetic Stabilization due to Relativistic Spin–Orbit Coupling" . Zeitschrift für anorganische und allgemeine Chemie . 637 (3–4): 357–361. doi :10.1002/zaac.201000405 . ISSN 0044-2313 .
^ Kaskel, Stefan; Klem, Michael T.; Corbett, John D. (2002-07-01). "Polyatomic Clusters of the Triel Elements. Palladium-Centered Clusters of Thallium in A 8 Tl 11 Pd, A = Cs, Rb, K" . Inorganic Chemistry . 41 (13): 3457–3462. doi :10.1021/ic020078b . ISSN 0020-1669 . PMID 12079464 .
^ a b Dai, Jing-Cao; Corbett, John D. (2006-03-01). "Substitution of Au or Hg into BaTl 2 and BaIn 2 . New Ternary Examples of Smaller CeCu 2 -Type Intermetallic Phases" . Inorganic Chemistry . 45 (5): 2104–2111. doi :10.1021/ic051891k . ISSN 0020-1669 . PMID 16499373 .
^ a b Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D. (2011-01-03). "Synthesis, Structure, and Bonding of BaTl 4 . Size Effects on Encapsulation of Cations in Electron-Poor Metal Networks" . Inorganic Chemistry . 50 (1): 238–244. doi :10.1021/ic1018828 . ISSN 0020-1669 . PMID 21138304 .
^ a b Kraft, Rainer; Rayaprol, Sudhindra; Sebastian, C. Peter; Pöttgen, Rainer (2006-02-01). "Ferromagnetic Ordering in the Thallide EuPdTl 2" . Zeitschrift für Naturforschung B . 61 (2): 159–163. doi :10.1515/znb-2006-0207 . ISSN 1865-7117 .
^ a b Huang, DaPing; Corbett, John D. (1998-08-01). "A 5 TaAs 4 Tl 2 (A = Rb, K). Transition-Metal Zintl Phases with a Novel Complex Ion: Synthesis, Structure, and Bonding" . Inorganic Chemistry . 37 (16): 4006–4010. doi :10.1021/ic9802395 . ISSN 0020-1669 . PMID 11670516 .
^ Liu, Shengfeng; Corbett, John D. (2004-08-01). "Synthesis, Structure, and Bonding of BaAuTl 3 and BaAuIn 3 : Stabilization of BaAl 4 -Type Examples of the Heavier Triels through Gold Substitution" . Inorganic Chemistry . 43 (16): 4988–4993. doi :10.1021/ic040010r . ISSN 0020-1669 . PMID 15285675 .
^ Liu, Shengfeng; Corbett, John D. (2004-04-01). "Ba 2 AuTl 7 : An Intermetallic Compound with a Novel Condensed Structure" . Inorganic Chemistry . 43 (8): 2471–2473. doi :10.1021/ic035399h . ISSN 0020-1669 . PMID 15074963 .
Neg. ox. states Thallium(I)
Thallium(III)