Thévenin's theorem

Fig. 1. Any black box containing only resistances, voltage sources and current sources, can be replaced by a Thévenin equivalent circuit consisting of an equivalent voltage source in series connection with an equivalent resistance.

As originally stated in terms of direct-current resistive circuits only, Thévenin's theorem states that "Any linear electrical network containing only voltage sources, current sources and resistances can be replaced at terminals A–B by an equivalent combination of a voltage source Vth in a series connection with a resistance Rth."

  • The equivalent voltage Vth is the voltage obtained at terminals A–B of the network with terminals A–B open circuited.
  • The equivalent resistance Rth is the resistance that the circuit between terminals A and B would have if all ideal voltage sources in the circuit were replaced by a short circuit and all ideal current sources were replaced by an open circuit.
  • If terminals A and B are connected to one another, the current flowing from A and B will be This means that Rth could alternatively be calculated as Vth divided by the short-circuit current between A and B when they are connected together.

In circuit theory terms, the theorem allows any one-port network to be reduced to a single voltage source and a single impedance.

The theorem also applies to frequency domain AC circuits consisting of reactive (inductive and capacitive) and resistive impedances. It means the theorem applies for AC in an exactly same way to DC except that resistances are generalized to impedances.

The theorem was independently derived in 1853 by the German scientist Hermann von Helmholtz and in 1883 by Léon Charles Thévenin (1857–1926), an electrical engineer with France's national Postes et Télégraphes telecommunications organization.[1][2][3][4][5][6][7]

Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response.[8][9] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent; use of the theorem may in some cases be more convenient than use of Kirchhoff's circuit laws.[7][10]

A proof of the theorem

Various proofs have been given of Thévenin's theorem. Perhaps the simplest of these was the proof in Thévenin's original paper.[3] Not only is that proof elegant and easy to understand, but a consensus exists[4] that Thévenin's proof is both correct and general in its applicability. The proof goes as follows:

Consider an active network containing impedances, (constant-) voltage sources and (constant-) current sources. The configuration of the network can be anything. Access to the network is provided by a pair of terminals. Designate the voltage measured between the terminals as Vθ, as shown in the box on the left side of Figure 2.

Fig. 2. Figure used in the proof of Thévenin's theorem.

Suppose that the voltage sources within the box are replaced by short circuits, and the current sources by open circuits. If this is done, no voltage appears across the terminals, and it is possible to measure the impedance between the terminals. Call this impedance Zθ.

Now suppose that one attaches some linear network to the terminals of the box, having impedance Ze, as in Figure 2a. We wish to find the current I through Ze. The answer is not obvious, since the terminal voltage will not be Vθ after Ze is connected.

Instead, we imagine that we attach, in series with impedance Ze, a source with electromotive force E equal to Vθ but directed to oppose Vθ, as shown in Figure 2b. No current will then flow through Ze since E balances Vθ.

Next, we insert another source of electromotive force, E1, in series with Ze, where E1 has the same magnitude as E but is opposed in direction (see Figure 2c). The current, I1, can be determined as follows: it is the current that would result from E1 acting alone, with all other sources (within the active network and the external network) set to zero. This current is, therefore,

because Ze is the impedance external to the box and Zθ looking into the box when its sources are zero.

Finally, we note that E and E1 can be removed together without changing the current, and when they are removed, we are back to Figure 2a. Therefore I1 is the current, I, that we are seeking, i.e.

thus completing the proof. Figure 2d shows the Thévenin equivalent circuit.

Helmholtz's proof

As noted, Thévenin's theorem was first discovered and published by the German scientist Hermann von Helmholtz in 1853,[1] four years before Thévenin's birth. Thévenin's 1883 proof, described above, is nearer in spirit to modern methods of electrical engineering, and this may explain why his name is more commonly associated with the theorem.[11] Helmholtz's earlier formulation of the problem reflects a more general approach that is closer to physics.

In his 1853 paper, Helmholtz was concerned with the electromotive properties of "physically extensive conductors", in particular, with animal tissue. He noted that earlier work by physiologist Emil du Bois-Reymond had shown that "every smallest part of a muscle that can be stimulated is capable of producing electrical currents." At this time, experiments were carried out by attaching a galvanometer at two points to a sample of animal tissue and measuring current flow through the external circuit. Since the goal of this work was to understand something about the internal properties of the tissue, Helmholtz wanted to find a way to relate those internal properties to the currents measured externally.

Helmholtz's starting point was a result published by Gustav Kirchhoff in 1848. [12] Like Helmholtz, Kirchhoff was concerned with three-dimensional, electrically conducting systems. Kirchhoff considered a system consisting of two parts, which he labelled parts A and B. Part A (which played the part of the "active network" in Fig. 2) consisted of a collection of conducting bodies connected end to end, each body characterized by an electromotive force and a resistance. Part B was assumed to be connected to the endpoints of A via two wires. Kirchhoff then showed (p. 195) that "without changing the flow at any point in B, one can substitute for A a conductor in which an electromotive force is located which is equal to the sum of the voltage differences in A, and which has a resistance equal to the summed resistances of the elements of A".

In his 1853 paper, Helmholtz acknowledged Kirchhoff's result, but noted that it was only valid in the case that, "as in hydroelectric batteries", there are no closed current curves in A, but rather that all such curves pass through B. He therefore set out to generalize Kirchhoff's result to the case of an arbitrary, three-dimensional distribution of currents and voltage sources within system A.

Helmholtz began by providing a more general formulation than had previously been published of the superposition principle, which he expressed (p. 212-213) as follows:

If any system of conductors contains electromotive forces at various locations, the electrical voltage at every point in the system through which the current flows is equal to the algebraic sum of those voltages which each of the electromotive forces would produce independently of the others. And similarly, the components of the current intensity that are parallel to three perpendicular axes are equal to the sum of the corresponding components that belong to the individual forces.

Using this theorem, as well as Ohm's law, Helmholtz proved the following three theorems about the relation between the internal voltages and currents of "physical" system A, and the current flowing through the "linear" system B, which was assumed to be attached to A at two points on its surface:

  1. For every conductor A, within whose interior electromotive forces are arbitrarily distributed, a certain distribution of electromotive forces can be specified on its surface, which would produce the same currents as the internal forces of A in every applied conductor B.
  2. The voltages and current components inside the conductor A when an external circuit is attached are equal to the sum of the voltages and current components that occur in it in the absence of the attached circuit and those of the surface.
  3. Different ways of distributing electromotive forces on the surface of the conductor A, which should give the same derived currents as its internal forces, can only differ by a difference that has the same constant value at all points on the surface.

From these, Helmholtz derived his final result (p. 222):

If a physical conductor with constant electromotive forces in two specific points on its surface is connected to any linear conductor, then in its place one can always substitute a linear conductor with a certain electromotive force and a certain resistance, which in all applied linear conductors would excite exactly the same currents as the physical one. ... The resistance of the linear conductor to be substituted is equal to that of the body when a current is passed through it from the two entry points of the linear conductor.

He then noted that his result, derived for a general "physical system", also applied to "linear" (in a geometric sense) circuits like those considered by Kirchhoff:

What applies to every physical conductor also applies to the special case of a branched linear current system. Even if two specific points of such a system are connected to any other linear conductors, it behaves compared to them like a linear conductor of certain resistance, the magnitude of which can be found according to the well-known rules for branched lines, and of certain electromotive force, which is given by the voltage difference of the derived points as it existed before the added circuit.

This formulation of the theorem is essentially the same as Thévenin's, published 30 years later.

Calculating the Thévenin equivalent

The equivalent circuit is a voltage source with voltage Vth in series with a resistance Rth.

The Thévenin-equivalent voltage Vth is the open-circuit voltage at the output terminals of the original circuit. When calculating a Thévenin-equivalent voltage, the voltage divider principle is often useful, by declaring one terminal to be Vout and the other terminal to be at the ground point.

The Thévenin-equivalent resistance RTh is the resistance measured across points A and B "looking back" into the circuit. The resistance is measured after replacing all voltage- and current-sources with their internal resistances. That means an ideal voltage source is replaced with a short circuit, and an ideal current source is replaced with an open circuit. Resistance can then be calculated across the terminals using the formulae for series and parallel circuits. This method is valid only for circuits with independent sources. If there are dependent sources in the circuit, another method must be used such as connecting a test source across A and B and calculating the voltage across or current through the test source.

As a mnemonic, the Thevenin replacements for voltage and current sources can be remembered as the sources' values (meaning their voltage or current) are set to zero. A zero valued voltage source would create a potential difference of zero volts between its terminals, just like an ideal short circuit would do, with two leads touching; therefore the source is replaced with a short circuit. Similarly, a zero valued current source and an open circuit both pass zero current.

Example

Fig. 3.
  1. Original circuit
  2. The equivalent voltage
  3. The equivalent resistance
  4. The equivalent circuit

In the example, calculating the equivalent voltage: (Notice that R1 is not taken into consideration, as above calculations are done in an open-circuit condition between A and B, therefore no current flows through this part, which means there is no current through R1 and therefore no voltage drop along this part.)

Calculating equivalent resistance (Rx || Ry is the total resistance of two parallel resistors):

Conversion to a Norton equivalent

Fig. 4. Norton-Thevenin conversion

A Norton equivalent circuit is related to the Thévenin equivalent by

Practical limitations

  • Many circuits are only linear over a certain range of values, thus the Thévenin equivalent is valid only within this linear range.
  • The Thévenin equivalent has an equivalent I–V characteristic only from the point of view of the load.
  • The power dissipation of the Thévenin equivalent is not necessarily identical to the power dissipation of the real system. However, the power dissipated by an external resistor between the two output terminals is the same regardless of how the internal circuit is implemented.

In three-phase circuits

In 1933, A. T. Starr published a generalization of Thévenin's theorem in an article of the magazine Institute of Electrical Engineers Journal, titled A New Theorem for Active Networks,[13] which states that any three-terminal active linear network can be substituted by three voltage sources with corresponding impedances, connected in wye or in delta.

See also

References

  1. ^ a b von Helmholtz, Hermann (1853). "Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche" [Some laws concerning the distribution of electrical currents in conductors with applications to experiments on animal electricity]. Annalen der Physik und Chemie (in German). 89 (6): 211–233. Bibcode:1853AnP...165..211H. doi:10.1002/andp.18531650603.
  2. ^ Thévenin, Léon Charles (1883). "Extension de la loi d'Ohm aux circuits électromoteurs complexes" [Extension of Ohm's law to complex electromotive circuits]. Annales Télégraphiques. 3e series (in French). 10: 222–224.
  3. ^ a b Thévenin, Léon Charles (1883). "Sur un nouveau théorème d'électricité dynamique" [On a new theorem of dynamic electricity]. Comptes rendus hebdomadaires des séances de l'Académie des Sciences (in French). 97: 159–161.
  4. ^ a b Johnson, Don H. (2003). "Origins of the equivalent circuit concept: the voltage-source equivalent" (PDF). Proceedings of the IEEE. 91 (4): 636–640. doi:10.1109/JPROC.2003.811716. hdl:1911/19968.
  5. ^ Johnson, Don H. (2003). "Origins of the equivalent circuit concept: the current-source equivalent" (PDF). Proceedings of the IEEE. 91 (5): 817–821. doi:10.1109/JPROC.2003.811795.
  6. ^ Brittain, James E. (March 1990). "Thevenin's theorem". IEEE Spectrum. 27 (3): 42. doi:10.1109/6.48845. S2CID 2279777. Retrieved 2013-02-01.
  7. ^ a b Dorf, Richard C.; Svoboda, James A. (2010). "Chapter 5: Circuit Theorems". Introduction to Electric Circuits (8th ed.). Hoboken, NJ, USA: John Wiley & Sons. pp. 162–207. ISBN 978-0-470-52157-1.
  8. ^ Brenner, Egon; Javid, Mansour (1959). "Chapter 12: Network Functions". Analysis of Electric Circuits. McGraw-Hill. pp. 268–269.
  9. ^ Elgerd, Olle Ingemar [in German] (2007). "Chapter 10: Energy System Transients - Surge Phenomena and Symmetrical Fault Analysis". Electric Energy Systems Theory: An Introduction. Tata McGraw-Hill. pp. 402–429. ISBN 978-0-07019230-0.
  10. ^ Dwight, Herbert Bristol (1949). "Section 2: Electric and Magnetic Circuits". In Knowlton, Archer E. (ed.). Standard Handbook for Electrical Engineers (8th ed.). McGraw-Hill. p. 26.
  11. ^ Maloberti, Franco; Davies, Anthony C. (2016). A Short History of Circuits and Systems. Delft: River Publishers. p. 37. ISBN 978-87-93379-71-8.
  12. ^ Kirchhoff, Gustav (1848). "Ueber die Anwendbarkeit der Formeln für die Intensitäten der galvanischen Ströme in einem Systeme linearer Leiter auf Systeme, die zum Theil aus nicht linearen Leitern bestehen" [On the applicability of the formulas for the intensities of the galvanic currents in a system of linear conductors to systems that partly consist of non-linear conductors]. Annalen der Physik und Chemie (in German). 75: 189–205. doi:10.1002/andp.18481511003.
  13. ^ Starr, A. T. (1933). "A new theorem for active networks". Journal of the Institution of Electrical Engineers. 73 (441): 303–308. doi:10.1049/jiee-1.1933.0129.

Further reading

Read other articles:

American lawyer and politician (1800–1880) Stephen T. LoganBornStephen Trigg Logan(1800-02-24)February 24, 1800DiedJuly 17, 1880(1880-07-17) (aged 80)NationalityAmericanOccupation(s)lawyer, politicianKnown forpracticed law with Abraham Lincoln (1841–1843)ChildrenDavid, SallyRelativesGeandfathers: Stephen Trigg, John Logan Stephen Trigg Logan (February 24, 1800 – July 17, 1880) was an American lawyer and politician. He practiced law with Abraham Lincoln from 1841 to 1843.[1 …

American basketball player (1936–1999) Wilt ChamberlainChamberlain with the Harlem Globetrotters in 1959Personal informationBorn(1936-08-21)August 21, 1936Philadelphia, Pennsylvania, U.S.DiedOctober 12, 1999(1999-10-12) (aged 63)Los Angeles, California, U.S.Listed height7 ft 1 in (2.16 m)Listed weight275 lb (125 kg)Career informationHigh schoolOverbrook (Philadelphia, Pennsylvania)CollegeKansas (1956–1958)NBA draft1959: territorial pickSelected by the Philadelph…

Il duca di Parma Antonio Farnese, 1720 Ilario Giacinto Mercanti detto lo Spolverini (Parma, 13 gennaio 1657 – Parma, 4 agosto 1734) è stato un pittore italiano. Indice 1 Biografia 2 Opere 3 Note 4 Bibliografia 5 Voci correlate 6 Altri progetti 7 Collegamenti esterni Biografia Fu il migliore allievo di Francesco Monti e «non altrimenti che il suo maestro, si acquistò nome dipingendo battaglie né so se per esagerazione o per verità solea dirsi che i soldati del Monti minacciavano e quei del…

Marcellini in un campo di aviazione in Somalia durante la guerra Romolo Marcellini (Montecosaro, 6 ottobre 1910 – Civitanova Marche, 3 giugno 1999) è stato un regista italiano. Indice 1 Biografia 2 Carriera 3 Il cinema e la memoria 4 Filmografia 4.1 Lungometraggi 4.2 Documentari 4.3 Attore 5 Note 6 Bibliografia 7 Collegamenti esterni Biografia Dopo una laurea in Scienze Economiche, Romolo Marcellini iniziò un'attività di giornalista e cominciò a interessarsi di cinema, scrivendo il soggett…

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Certaines informations figurant dans cet article ou cette section devraient être mieux reliées aux sources mentionnées dans les sections « Bibliographie », « Sources » ou « Liens externes » (septembre 2011). Vous pouvez améliorer la vérifiabilité en associant ces informations à des références à l'aide d'appels de notes. François l'OlonnaisFrançois l'Olonnais dans la pr…

拉米兹·阿利雅Ramiz Alia第1任阿尔巴尼亚總統任期1991年4月30日—1992年4月9日继任萨利·贝里沙阿尔巴尼亚人民议会主席团主席任期1982年11月22日—1991年4月30日前任哈奇·列希继任转任总统阿尔巴尼亚劳动党第一书记任期1985年4月13日—1991年5月4日前任恩维尔·霍查继任无(政党解散) 个人资料出生(1925-10-18)1925年10月18日 阿尔巴尼亚斯库台逝世2011年10月17日(2011歲—10—17)(85歲)…

2010 Spanish comedy-drama film The Last CircusTheatrical posterSpanishBalada triste de trompeta Directed byÁlex de la IglesiaWritten byÁlex de la IglesiaProduced byVérane FrédianiGerardo HerreroFranck RibièreStarring Carlos Areces Antonio de la Torre Carolina Bang CinematographyKiko de la RicaEdited byAlejandro LázaroMusic byRoque BañosProductioncompaniesTornasol FilmsCastafiore FilmsLa Fabrique 2Distributed byWarner Bros. (Spain)Release dates 7 September 2010 (2010-09-07)&…

Standards organization overseeing IP addressesIANA redirects here. For other uses, see IANA (disambiguation). Internet Assigned Numbers AuthorityAbbreviationIANAFoundedDecember 1988; 35 years ago (1988-12)FounderU.S. Federal GovernmentFocusManage DNS zonesHeadquarters12025 Waterfront Drive, Suite 300, Los Angeles, CA 90094-2536, USALocationPlaya Vista, Los Angeles, United StatesOwnerICANNKey peopleKim DaviesWebsitewww.iana.org InternetAn Opte Project visualization of routi…

Військово-музичне управління Збройних сил України Тип військове формуванняЗасновано 1992Країна  Україна Емблема управління Військово-музичне управління Збройних сил України — структурний підрозділ Генерального штабу Збройних сил України призначений для плануван…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2016. Menara BRI BandungInformasi umumStatusBeroperasiLokasi Bandung, IndonesiaKoordinat6°55′14″S 107°36′26″E / 6.92056°S 107.60722°E / -6.92056; 107.60722Pembukaan1992PemilikDana Pensiun Bank Rakyat IndonesiaData teknisJumla…

Charleston County Courthouse (1790-92), James Hoban, architect. A likely model for The White House. Court House Square is the location of Charleston County Courthouse in downtown Charleston, South Carolina, at the intersection of Meeting and Broad Streets. It is historically known as the Four Corners of Law because the intersection hosted buildings from each level of government: the Courthouse (state law), City Hall (municipal law), the Federal Building and U.S. Post Office (federal law), and Sa…

  لمعانٍ أخرى، طالع هيبرون (توضيح). هيبرون   الإحداثيات 43°17′16″N 73°20′03″W / 43.287777777778°N 73.334166666667°W / 43.287777777778; -73.334166666667   [1] تقسيم إداري  البلد الولايات المتحدة  التقسيم الأعلى مقاطعة واشنطن  خصائص جغرافية  المساحة 56.42 ميل مربع  ارتفاع 242 متر&…

English, Scottish, Irish and Great Britain legislationActs of parliaments of states preceding the United Kingdom Of the Kingdom of EnglandRoyal statutes, etc. issued beforethe development of Parliament 1225–1267 1275–1307 1308–1325 Temp. incert. 1327–1376 1377–1397 1399–1411 1413–1421 1422–1460 1461 1463 1464 1467 1468 1472 1474 1477 1482 1483 1485–1503 1509–1535 1536 1539–1540 1541 1542 1543 1545 1546 1547 1548 1549      1551   …

Branson, MissouriKotaJulukan: Live Entertainment Capital of the World!Letak Branson di negara bagian MissouriNegaraAmerika SerikatNegara bagianMissouriCountyStone, TaneyPemerintahan • Wali kotaRaeanne PresleyLuas • Total16,3 sq mi (42,3 km2) • Luas daratan16,2 sq mi (41,9 km2) • Luas perairan0,2 sq mi (0,4 km2)Ketinggian778 ft (237 m)Populasi (2000) • Total6.050 •&#…

Type of logical system Predicate logic redirects here. For logics admitting predicate or function variables, see Higher-order logic. Transformation rules Propositional calculus Rules of inference Implication introduction / elimination (modus ponens) Biconditional introduction / elimination Conjunction introduction / elimination Disjunction introduction / elimination Disjunctive / hypothetical syllogism Constructive / destructive dilemma Absor…

Ethnic group in Australia This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Irish Australians – news · newspapers · books · scholar · JSTOR (February 2023) (Learn how and when to remove this message) Ethnic group Irish AustraliansGael-AstrálaighAustralian Irish heritage flagTotal populationc. 7,000,000 (30…

American journalist and government official (1891–1981) Byron PricePrice before 1946Director, U.S. Office of CensorshipIn officeDecember 20, 1941 – August 15, 1945PresidentFranklin D. Roosevelt Harry S. Truman Personal detailsBorn(1891-03-25)March 25, 1891Topeka, Indiana, U.S.DiedAugust 6, 1981(1981-08-06) (aged 90)Henderson County, North Carolina, U.S.CitizenshipAmericanAwardsPulitzer Prize 1944 Medal for Merit 1946 Byron Price (March 25, 1891 – August 6, 1981) …

Period of violence in Libya following the overthrow of Gaddafi Factional violence in LibyaPart of the Libyan Crisis (2011–present) (aftermath of the First Libyan Civil War)Militiamen in the streets of Tripoli after skirmishes, January 2012. Since the end of the First Libyan Civil War, armed militias had clashed throughout the country.Date1 November 2011 – 16 May 2014(2 years, 6 months, 2 weeks and 1 day)LocationLibyaResult Indecisive; Start of the Second Libyan Civil War …

Dutch drummer Han BenninkBennink at INNtöne Jazzfestival 2019Background informationBorn (1942-04-17) 17 April 1942 (age 82)OriginZaandam, the NetherlandsGenresEuropean free jazzAvant-garde jazzFree improvisationOccupation(s)MusicianInstrument(s)Drums, percussionMusical artist Han Bennink (born 17 April 1942) is a Dutch drummer and percussionist.[1] On occasion his recordings have featured him playing soprano saxophone, bass clarinet, trombone, violin, banjo and piano. Though perhap…

A typically wooden shaft used for playing cue sports A woman using a cue stick to push a billiard ball forward to move an object ball. A pool cue and its major parts.[1]: 71–72 [2] A cue stick (or simply cue, more specifically billiards cue, pool cue, or snooker cue) is an item of sporting equipment essential to the games of pool, snooker and carom billiards. It is used to strike a ball, usually the cue ball. Cues are tapered sticks, typically about 57–59 …