In multilinear algebra, a tensor decomposition is any scheme for expressing a "data tensor" (M-way array) as a sequence of elementary operations acting on other, often simpler tensors.[1][2][3] Many tensor decompositions generalize some matrix decompositions.[4]
Tensors are generalizations of matrices to higher dimensions (or rather to higher orders, i.e. the higher number of dimensions) and can consequently be treated as multidimensional fields.[1][5]
The main tensor decompositions are:
This section introduces basic notations and operations that are widely used in the field.
Table of symbols and their description.
Symbols
Definition
scalar, vector, row, matrix, tensor
vectorizing either a matrix or a tensor
matrixized tensor
mode-m product
Introduction
A multi-way graph with K perspectives is a collection of K matrices with dimensions I × J (where I, J are the number of nodes). This collection of matrices is naturally represented as a tensor X of size I × J × K. In order to avoid overloading the term “dimension”, we call an I × J × K tensor a three “mode” tensor, where “modes” are the numbers of indices used to index the tensor.
References
^ abVasilescu, MAO; Terzopoulos, D (2007). "Multilinear (tensor) image synthesis, analysis, and recognition [exploratory dsp]". IEEE Signal Processing Magazine. 24 (6): 118–123. Bibcode:2007ISPM...24R.118V. doi:10.1109/MSP.2007.906024.
^Rabanser, Stephan; Shchur, Oleksandr; Günnemann, Stephan (2017). "Introduction to Tensor Decompositions and their Applications in Machine Learning". arXiv:1711.10781 [stat.ML].
^Gujral, Ekta; Papalexakis, Evangelos E. (9 October 2020). "OnlineBTD: Streaming Algorithms to Track the Block Term Decomposition of Large Tensors". 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). pp. 168–177. doi:10.1109/DSAA49011.2020.00029. ISBN978-1-7281-8206-3. S2CID227123356.
^Gujral, Ekta (2022). "Modeling and Mining Multi-Aspect Graphs With Scalable Streaming Tensor Decomposition". arXiv:2210.04404 [cs.SI].
^ abVasilescu, M.A.O.; Kim, E. (2019). Compositional Hierarchical Tensor Factorization: Representing Hierarchical Intrinsic and Extrinsic Causal Factors. In The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19): Tensor Methods for Emerging Data Science Challenges. arXiv:1911.04180.