TOI-2180 b
TOI-2180 b is a giant exoplanet orbiting the G-type star TOI-2180, also known as HD 238894.[1] It was discovered with the help of the Transiting Exoplanet Survey Satellite and is currently the exoplanet with the longest orbital period TESS was able to uncover (as of September 2022).[3] TOI-2180 b orbits its host star every 260.16 days.[2] DiscoveryTOI-2180 b was first identified as an exoplanet candidate due to a single transit with TESS at 12./13. December 2019 by a group of citizen scientists called the Visual Survey Group, which includes Thomas Lee Jacobs, a former U.S. naval officer.[4] The group was using the light curve processing tool lcTools. In May 2020 the Planet Hunters: TESS collaboration announced this object as a Community TESS Object of Interest (CTOI) and it was soon promoted into a regular TOI.[1] The TESS-Keck Survey collaboration performed radial velocity follow-up observations for nearly 2 years with the Automated Planet Finder and Keck I. The follow-up observations uncovered that the single transit was caused by a long-period planet.[1] Orbital propertiesTOI-2180 b has a long orbital period of 260.16 days,[2] which also leads to a long transit duration of 24 hours.[1] The distance to the host star is 82.8% the sun-earth distance.[1] The planet does not orbit inside the habitable zone, despite this close resemblance in semi-major axis.[5] TOI-2180 b has a high eccentricity of the orbit at 0.37.[1] The second transit was not detected from the ground and the third transit was not observed.[1] The fourth transit was observed at 31. January/01. February 2022, refining the orbital period. The next transit will occur on 2022 October 18 at 21:28 UTC.[2] Physical propertiesThe planet has the same size as Jupiter, but is 2.8 times heavier than Jupiter. TOI-2180 b stand out because of its cold estimated temperature of about 348 Kelvin (74.9 °C, 166.7 °F).[1] This is closer to Jupiters 165 K than most discovered giant exoplanets. TOI-2180 b belongs to a small sample of temperate Jupiters with a temperature <400 K that transit, such as Kepler-167 e, WD 1856+534 b, Kepler-1704 b, KOI-3680 b, Kepler-1514 b and Kepler-539 b. TOI-2180 b has by far the brightest host star with a visual magnitude of 9.16, which is about 3 magnitudes brighter than the next brightest system in this sample.[5] The planet is likely enriched in metals compared to its host star. The discovery team inferred that TOI-2180 b is enriched in metals by a factor of about 5 compared to its host star. This means it has about 100 ME of heavy elements in its envelope and interior.[1] Future observationsThe exoplanet is a poor target for transmission spectroscopy because of its high surface gravity and the large radius of the host star. The large radius of the star causes a relative shallow transit depth of about 0.5%. The system is still an excellent target to find rings and exomoons around TOI-2180 b. It is also a good target to study the migration of exoplanets.[1] It could be one of the best targets for exomoon searches.[6] Host starThe host star is a 9.16 magnitude[7] bright and slightly evolved star with a spectral type of G5. It has a mass of 1.1 M☉ and a radius of 1.6 R☉. The radius is increased due to the evolved nature of the star. The star is 116 parsec (379 light-years) distant from earth and has an age of about 8.1 billion years.[1] Habitable ZoneCurrently the habitable zone around TOI-2180 is between 1.5 and 2.2 astronomical units.[1][note 1] Because TOI-2180 is slightly evolved, it had a habitable zone closer to the star in the past. At an age of about 3 billion years the habitable zone was located between 1.1 and 1.6 astronomical units.[1][8][note 2] Outer planet candidateThe radial velocity monitoring also showed acceleration of TOI-2180 b due to an outer planet or low-mass star in the system.[1] A later analysis of RV data has shown that an outer companion has an orbital period of 1558+68 Notes
References
|