Every proper coloring and cocoloring of a graph are also subcolorings, so the subchromatic number of any graph is at most equal to the cochromatic number, which is at most equal to the chromatic number.
Subcoloring is as difficult to solve exactly as coloring, in the sense that (like coloring) it is NP-complete. More specifically,
the problem of determining whether a planar graph has subchromatic number at most 2 is NP-complete, even if it is a
The subchromatic number of a cograph can be computed in polynomial time (Fiala et al. 2003). For every fixed integer r, it is possible to decide in polynomial time whether the subchromatic number of interval and permutation graphs is at most r (Broersma et al. 2002).