In field theory , a branch of mathematics , the Stufe (/ʃtuːfə /; German: level) s (F ) of a field F is the least number of squares that sum to −1. If −1 cannot be written as a sum of squares, s (F ) =
∞
{\displaystyle \infty }
. In this case, F is a formally real field . Albrecht Pfister proved that the Stufe, if finite, is always a power of 2, and that conversely every power of 2 occurs.[ 1]
Powers of 2
If
s
(
F
)
≠
∞
{\displaystyle s(F)\neq \infty }
then
s
(
F
)
=
2
k
{\displaystyle s(F)=2^{k}}
for some natural number
k
{\displaystyle k}
.[ 1] [ 2]
Proof: Let
k
∈
N
{\displaystyle k\in \mathbb {N} }
be chosen such that
2
k
≤
s
(
F
)
<
2
k
+
1
{\displaystyle 2^{k}\leq s(F)<2^{k+1}}
. Let
n
=
2
k
{\displaystyle n=2^{k}}
. Then there are
s
=
s
(
F
)
{\displaystyle s=s(F)}
elements
e
1
,
…
,
e
s
∈
F
∖
{
0
}
{\displaystyle e_{1},\ldots ,e_{s}\in F\setminus \{0\}}
such that
0
=
1
+
e
1
2
+
⋯
+
e
n
−
1
2
⏟
=:
a
+
e
n
2
+
⋯
+
e
s
2
⏟
=:
b
.
{\displaystyle 0=\underbrace {1+e_{1}^{2}+\cdots +e_{n-1}^{2}} _{=:\,a}+\underbrace {e_{n}^{2}+\cdots +e_{s}^{2}} _{=:\,b}\;.}
Both
a
{\displaystyle a}
and
b
{\displaystyle b}
are sums of
n
{\displaystyle n}
squares, and
a
≠
0
{\displaystyle a\neq 0}
, since otherwise
s
(
F
)
<
2
k
{\displaystyle s(F)<2^{k}}
, contrary to the assumption on
k
{\displaystyle k}
.
According to the theory of Pfister forms , the product
a
b
{\displaystyle ab}
is itself a sum of
n
{\displaystyle n}
squares, that is,
a
b
=
c
1
2
+
⋯
+
c
n
2
{\displaystyle ab=c_{1}^{2}+\cdots +c_{n}^{2}}
for some
c
i
∈
F
{\displaystyle c_{i}\in F}
. But since
a
+
b
=
0
{\displaystyle a+b=0}
, we also have
−
a
2
=
a
b
{\displaystyle -a^{2}=ab}
, and hence
−
1
=
a
b
a
2
=
(
c
1
a
)
2
+
⋯
+
(
c
n
a
)
2
,
{\displaystyle -1={\frac {ab}{a^{2}}}=\left({\frac {c_{1}}{a}}\right)^{2}+\cdots +\left({\frac {c_{n}}{a}}\right)^{2},}
and thus
s
(
F
)
=
n
=
2
k
{\displaystyle s(F)=n=2^{k}}
.
Positive characteristic
Any field
F
{\displaystyle F}
with positive characteristic has
s
(
F
)
≤
2
{\displaystyle s(F)\leq 2}
.[ 3]
Proof: Let
p
=
char
(
F
)
{\displaystyle p=\operatorname {char} (F)}
. It suffices to prove the claim for
F
p
{\displaystyle \mathbb {F} _{p}}
.
If
p
=
2
{\displaystyle p=2}
then
−
1
=
1
=
1
2
{\displaystyle -1=1=1^{2}}
, so
s
(
F
)
=
1
{\displaystyle s(F)=1}
.
If
p
>
2
{\displaystyle p>2}
consider the set
S
=
{
x
2
:
x
∈
F
p
}
{\displaystyle S=\{x^{2}:x\in \mathbb {F} _{p}\}}
of squares.
S
∖
{
0
}
{\displaystyle S\setminus \{0\}}
is a subgroup of index
2
{\displaystyle 2}
in the cyclic group
F
p
×
{\displaystyle \mathbb {F} _{p}^{\times }}
with
p
−
1
{\displaystyle p-1}
elements. Thus
S
{\displaystyle S}
contains exactly
p
+
1
2
{\displaystyle {\tfrac {p+1}{2}}}
elements, and so does
−
1
−
S
{\displaystyle -1-S}
.
Since
F
p
{\displaystyle \mathbb {F} _{p}}
only has
p
{\displaystyle p}
elements in total,
S
{\displaystyle S}
and
−
1
−
S
{\displaystyle -1-S}
cannot be disjoint , that is, there are
x
,
y
∈
F
p
{\displaystyle x,y\in \mathbb {F} _{p}}
with
S
∋
x
2
=
−
1
−
y
2
∈
−
1
−
S
{\displaystyle S\ni x^{2}=-1-y^{2}\in -1-S}
and thus
−
1
=
x
2
+
y
2
{\displaystyle -1=x^{2}+y^{2}}
.
Properties
The Stufe s (F ) is related to the Pythagoras number p (F ) by p (F ) ≤ s (F ) + 1.[ 4] If F is not formally real then s (F ) ≤ p (F ) ≤ s (F ) + 1.[ 5] [ 6] The additive order of the form (1), and hence the exponent of the Witt group of F is equal to 2s (F ).[ 7] [ 8]
Examples
Notes
^ a b Rajwade (1993) p.13
^ Lam (2005) p.379
^ a b Rajwade (1993) p.33
^ Rajwade (1993) p.44
^ Rajwade (1993) p.228
^ Lam (2005) p.395
^ a b Milnor & Husemoller (1973) p.75
^ a b c Lam (2005) p.380
^ a b Lam (2005) p.381
^ Singh, Sahib (1974). "Stufe of a finite field". Fibonacci Quarterly . 12 : 81– 82. ISSN 0015-0517 . Zbl 0278.12008 .
References
Further reading
Knebusch, Manfred; Scharlau, Winfried (1980). Algebraic theory of quadratic forms. Generic methods and Pfister forms . DMV Seminar. Vol. 1. Notes taken by Heisook Lee . Boston - Basel - Stuttgart: Birkhäuser Verlag. ISBN 3-7643-1206-8 . Zbl 0439.10011 .