Metric that measures the distance between two strings of text
"String distance" redirects here. For the distance between strings and the fingerboard in musical instruments, see Action (music).
In mathematics and computer science, a string metric (also known as a string similarity metric or string distance function) is a metric that measures distance ("inverse similarity") between two text strings for approximate string matching or comparison and in fuzzy string searching. A requirement for a string metric (e.g. in contrast to string matching) is fulfillment of the triangle inequality. For example, the strings "Sam" and "Samuel" can be considered to be close.[1] A string metric provides a number indicating an algorithm-specific indication of distance.
The most widely known string metric is a rudimentary one called the Levenshtein distance (also known as edit distance).[2] It operates between two input strings, returning a number equivalent to the number of substitutions and deletions needed in order to transform one input string into another. Simplistic string metrics such as Levenshtein distance have expanded to include phonetic, token, grammatical and character-based methods of statistical comparisons.
There also exist functions which measure a dissimilarity between strings, but do not necessarily fulfill the triangle inequality, and as such are not metrics in the mathematical sense. An example of such function is the Jaro–Winkler distance.
^Shlomi Dolev; Mohammad, Ghanayim; Alexander, Binun; Sergey, Frenkel; Yeali, S. Sun (2017). "Relationship of Jaccard and edit distance in malware clustering and online identification". 16th IEEE International Symposium on Network Computing and Applications: 369–373.