Stat (system call)
![]() stat command linestat() is a Unix system call that returns file attributes about an inode. The semantics of stat() vary between operating systems. As an example, Unix command ls uses this system call to retrieve information on files that includes:
stat() functionsThe C POSIX library header sys/stat.h, found on POSIX and other Unix-like operating systems, declares the The The family of functions was extended to implement large file support. Functions named The functions are defined as: int stat(const char *filename, struct stat *buf);
int lstat(const char *filename, struct stat *buf);
int fstat(int filedesc, struct stat *buf);
stat structureThis structure is defined in sys/stat.h header file as follows, although implementations are free to define additional fields:[2] struct stat {
mode_t st_mode;
ino_t st_ino;
dev_t st_dev;
dev_t st_rdev;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
off_t st_size;
struct timespec st_atim;
struct timespec st_mtim;
struct timespec st_ctim;
blksize_t st_blksize;
blkcnt_t st_blocks;
};
POSIX.1 does not require In older versions of POSIX.1 standard, the time-related fields were defined as The
The Criticism of atime
Reading a file changes its atime eventually requiring a disk write, which has been criticized as it is inconsistent with a read only file system. File system cache may significantly reduce this activity to one disk write per cache flush. Linux kernel developer Ingo Molnár publicly criticized the concept and performance impact of atime in 2007,[4][5] and in 2009, the relatime mount option had become the default, which addresses this criticism.[6] The behavior behind the relatime mount option offers sufficient performance for most purposes and should not break any significant applications, as it has been extensively discussed.[7] Initially, relatime only updated atime if atime < mtime or atime < ctime; that was subsequently modified to update atimes that were 24 hours old or older, so that tmpwatch and Debian's popularity counter (popcon) would behave properly.[8] Current versions of the Linux kernel support four mount options, which can be specified in fstab:
Current versions of Linux, macOS, Solaris, FreeBSD, and NetBSD support a noatime mount option in /etc/fstab, which causes the atime field never to be updated. Turning off atime updating breaks POSIX compliance, and some applications, such as mbox-driven "new mail" notifications,[9] and some file usage watching utilities, notably tmpwatch. The noatime option on OpenBSD behaves more like Linux relatime.[10] Version 4.0 of the Linux kernel mainline, which was released on April 12, 2015, introduced the new mount option lazytime. It allows POSIX-style atime updates to be performed in-memory and flushed to disk together with some non-time-related I/O operations on the same file; atime updates are also flushed to disk when some of the sync system calls are executed, or before the file's in-memory inode is evicted from the filesystem cache. Additionally, it is possible to configure for how long atime modifications can remain unflushed. That way, lazytime retains POSIX compatibility while offering performance improvements.[11][12] ctimeIt is tempting to believe that ctime originally meant creation time;[13] however, while early Unix did have modification and creation times, the latter was changed to be access time before there was any C structure in which to call anything ctime. The file systems retained just the access time (atime) and modification time (mtime) through 6th edition Unix. The ctime timestamp was added in the file system restructuring that occurred with Version 7 Unix, and has always referred to inode change time. It is updated any time file metadata stored in the inode changes, such as file permissions, file ownership, and creation and deletion of hard links. POSIX also mandates ctime (last status change) update with nonzero write() (file modification).[14] In some implementations, ctime is affected by renaming a file, despite filenames not being stored in inodes: Both original Unix, which implemented a renaming by making a link (updating ctime) and then unlinking the old name (updating ctime again) and modern Linux tend to do this. Unlike atime and mtime, ctime cannot be set to an arbitrary value with utime(), as used by the touch utility, for example. Instead, when utime() is used, or for any other change to the inode other than an update to atime caused by accessing the file, the ctime value is set to the current time. Time granularity
Example
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/types.h>
#include <pwd.h>
#include <grp.h>
#include <sys/stat.h>
int
main(int argc, char *argv[])
{
struct stat sb;
struct passwd *pwuser;
struct group *grpnam;
if (argc < 2)
{
fprintf(stderr, "Usage: %s: file ...\n", argv[0]);
exit(EXIT_FAILURE);
}
for (int i = 1; i < argc; i++)
{
if (-1 == stat(argv[i], &sb))
{
perror("stat()");
exit(EXIT_FAILURE);
}
if (NULL == (pwuser = getpwuid(sb.st_uid)))
{
perror("getpwuid()");
exit(EXIT_FAILURE);
}
if (NULL == (grpnam = getgrgid(sb.st_gid)))
{
perror("getgrgid()");
exit(EXIT_FAILURE);
}
printf("%s:\n", argv[i]);
printf("\tinode: %u\n", sb.st_ino);
printf("\towner: %u (%s)\n", sb.st_uid, pwuser->pw_name);
printf("\tgroup: %u (%s)\n", sb.st_gid, grpnam->gr_name);
printf("\tperms: %o\n", sb.st_mode & (S_IRWXU | S_IRWXG | S_IRWXO));
printf("\tlinks: %d\n", sb.st_nlink);
printf("\tsize: %ld\n", sb.st_size); /* you may use %lld */
printf("\tatime: %s", ctime(&sb.st_atim.tv_sec));
printf("\tmtime: %s", ctime(&sb.st_mtim.tv_sec));
printf("\tctime: %s", ctime(&sb.st_ctim.tv_sec));
printf("\n");
}
return 0;
}
References
External links
|
Portal di Ensiklopedia Dunia