Splitter (geometry)

  Arbitrary triangle ABC
  Excircles, tangent to the sides of ABC at TA, TB, TC
  Extouch triangle TATBTC
  Splitters of the perimeter ATA, BTB, CTC; intersect at the Nagel point N

In Euclidean geometry, a splitter is a line segment through one of the vertices of a triangle (that is, a cevian) that bisects the perimeter of the triangle.[1][2] They are not to be confused with cleavers, which also bisect the perimeter but instead emanate from the midpoint of one of the triangle's sides.

Properties

The opposite endpoint of a splitter to the chosen triangle vertex lies at the point on the triangle's side where one of the excircles of the triangle is tangent to that side.[1][2] This point is also called a splitting point of the triangle.[2] It is additionally a vertex of the extouch triangle and one of the points where the Mandart inellipse is tangent to the triangle side.[3]

The three splitters concur at the Nagel point of the triangle,[1] which is also called its splitting center.[2]

Generalization

Some authors have used the term "splitter" in a more general sense, for any line segment that bisects the perimeter of the triangle. Other line segments of this type include the cleavers, which are perimeter-bisecting segments that pass through the midpoint of a triangle side, and the equalizers, segments that bisect both the area and perimeter of a triangle.[4]

References

  1. ^ a b c Honsberger, Ross (1995), "Chapter 1: Cleavers and Splitters", Episodes in Nineteenth and Twentieth Century Euclidean Geometry, New Mathematical Library, vol. 37, Washington, DC: Mathematical Association of America, pp. 1–14, ISBN 0-88385-639-5, MR 1316889
  2. ^ a b c d Avishalom, Dov (1963), "The perimetric bisection of triangles", Mathematics Magazine, 36 (1): 60–62, JSTOR 2688140, MR 1571272
  3. ^ Juhász, Imre (2012), "Control point based representation of inellipses of triangles" (PDF), Annales Mathematicae et Informaticae, 40: 37–46, MR 3005114
  4. ^ Kodokostas, Dimitrios (2010), "Triangle equalizers", Mathematics Magazine, 83 (2): 141–146, doi:10.4169/002557010X482916

 

Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9