Type of geometric quantity
This article is about the spacetime concept. Not to be confused with the independent variable in
spectral analysis .
The spectral dimension is a real-valued quantity that characterizes a spacetime geometry and topology . It characterizes a spread into space over time, e.g. an ink drop diffusing in a water glass or the evolution of a pandemic in a population. Its definition is as follow: if a phenomenon spreads as
t
n
{\displaystyle t^{n}}
, with
t
{\displaystyle t}
the time, then the spectral dimension is
2
n
{\displaystyle 2n}
. The spectral dimension depends on the topology of the space, e.g., the distribution of neighbors in a population, and the diffusion rate.
In physics , the concept of spectral dimension is used, among other things, in
quantum gravity ,[ 1] [ 2] [ 3] [ 4] [ 5]
percolation theory ,
superstring theory ,[ 6] or
quantum field theory .[ 7]
Examples
The diffusion of ink in an isotropic homogeneous medium like still water evolves as
t
3
/
2
{\displaystyle t^{3/2}}
, giving a spectral dimension of 3.
Ink in a 2D Sierpiński triangle diffuses following a more complicated path and thus more slowly, as
t
0.6826
{\displaystyle t^{0.6826}}
, giving a spectral dimension of 1.3652.[ 8]
See also
References
^ Ambjørn, J.; Jurkiewicz, J.; Loll, R. (2005-10-20). "The Spectral Dimension of the Universe is Scale Dependent". Physical Review Letters . 95 (17): 171301. arXiv :hep-th/0505113 . Bibcode :2005PhRvL..95q1301A . doi :10.1103/physrevlett.95.171301 . ISSN 0031-9007 . PMID 16383815 . S2CID 15496735 .
^ Modesto, Leonardo (2009-11-24). "Fractal spacetime from the area spectrum". Classical and Quantum Gravity . 26 (24): 242002. arXiv :0812.2214 . doi :10.1088/0264-9381/26/24/242002 . ISSN 0264-9381 . S2CID 118826379 .
^ Hořava, Petr (2009-04-20). "Spectral Dimension of the Universe in Quantum Gravity at a Lifshitz Point". Physical Review Letters . 102 (16): 161301. arXiv :0902.3657 . Bibcode :2009PhRvL.102p1301H . doi :10.1103/physrevlett.102.161301 . ISSN 0031-9007 . PMID 19518693 . S2CID 8799552 .
^ Lauscher, Oliver; Reuter, Martin (2001). "Ultraviolet fixed point and generalized flow equation of quantum gravity". Physical Review D . 65 (2): 025013. arXiv :hep-th/0108040 . Bibcode :2001PhRvD..65b5013L . doi :10.1103/PhysRevD.65.025013 . S2CID 1926982 .
^ Lauscher, Oliver; Reuter, Martin (2005). "Fractal spacetime structure in asymptotically safe gravity". Journal of High Energy Physics . 2005 (10): 050. arXiv :hep-th/0508202 . Bibcode :2005JHEP...10..050L . doi :10.1088/1126-6708/2005/10/050 . S2CID 14396108 .
^ Atick, Joseph J.; Witten, Edward (1988). "The Hagedorn transition and the number of degrees of freedom of string theory". Nuclear Physics B . 310 (2). Elsevier BV: 291– 334. Bibcode :1988NuPhB.310..291A . doi :10.1016/0550-3213(88)90151-4 . ISSN 0550-3213 .
^ Lauscher, Oliver; Reuter, Martin (2005-10-18). "Fractal spacetime structure in asymptotically safe gravity". Journal of High Energy Physics . 2005 (10): 050. arXiv :hep-th/0508202 . Bibcode :2005JHEP...10..050L . doi :10.1088/1126-6708/2005/10/050 . ISSN 1029-8479 . S2CID 14396108 .
^ R. Hilfer and A. Blumen (1984) “Renormalisation on Sierpinski-type fractals” J. Phys. A: Math. Gen. 17