Family of sets closed under countable unions
In mathematics, a nonempty collection of sets is called a ๐-ring (pronounced sigma-ring) if it is closed under countable union and relative complementation.
Let
be a nonempty collection of sets. Then
is a ๐-ring if:
- Closed under countable unions:
if
for all ![{\displaystyle n\in \mathbb {N} }](https://wikimedia.org/api/rest_v1/media/math/render/svg/d059936e77a2d707e9ee0a1d9575a1d693ce5d0b)
- Closed under relative complementation:
if ![{\displaystyle A,B\in {\mathcal {R}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/96774c52aaf8069910c7eb3f59040fed9c50c882)
Properties
These two properties imply:
whenever
are elements of
This is because
Every ๐-ring is a ฮด-ring but there exist ฮด-rings that are not ๐-rings.
Similar concepts
If the first property is weakened to closure under finite union (that is,
whenever
) but not countable union, then
is a ring but not a ๐-ring.
Uses
๐-rings can be used instead of ๐-fields (๐-algebras) in the development of measure and integration theory, if one does not wish to require that the universal set be measurable. Every ๐-field is also a ๐-ring, but a ๐-ring need not be a ๐-field.
A ๐-ring
that is a collection of subsets of
induces a ๐-field for
Define
Then
is a ๐-field over the set
- to check closure under countable union, recall a
-ring is closed under countable intersections. In fact
is the minimal ๐-field containing
since it must be contained in every ๐-field containing
See also
- δ-ring โ Ring closed under countable intersections
- Field of sets โ Algebraic concept in measure theory, also referred to as an algebra of sets
- Join (sigma algebra) โ Algebraic structure of set algebraPages displaying short descriptions of redirect targets
- ๐-system (Dynkin system) โ Family closed under complements and countable disjoint unions
- Measurable function โ Kind of mathematical function
- Monotone class โ theoremPages displaying wikidata descriptions as a fallbackPages displaying short descriptions with no spaces
- ฯ-system โ Family of sets closed under intersection
- Ring of sets โ Family closed under unions and relative complements
- Sample space โ Set of all possible outcomes or results of a statistical trial or experiment
- ๐ additivity โ Mapping function
- ฯ-algebra โ Algebraic structure of set algebra
- ๐-ideal โ Family closed under subsets and countable unions
References
- Walter Rudin, 1976. Principles of Mathematical Analysis, 3rd. ed. McGraw-Hill. Final chapter uses ๐-rings in development of Lebesgue theory.
Families of sets over
|
Is necessarily true of ![{\displaystyle {\mathcal {F}}\colon }](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c806bc7022198fb7b8ddd4a0b376329bb77e00c) or, is closed under:
|
Directed by
|
|
|
|
|
|
|
|
|
F.I.P.
|
ฯ-system
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
|
Semiring
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
Semialgebra (Semifield)
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
Monotone class
|
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
only if ![{\displaystyle A_{i}\searrow }](https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba4f0f9c907ac9321bf8494f69cc190cbf8a56d) |
only if ![{\displaystyle A_{i}\nearrow }](https://wikimedia.org/api/rest_v1/media/math/render/svg/b851ff0dcb2264bbedafbef85a71e4f98c842865) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
|
๐-system (Dynkin System)
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
only if
![{\displaystyle A\subseteq B}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b09068bd2f7ba899aeb883ebe670b2ad07b0c851) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
only if or they are disjoint |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
Ring (Order theory)
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
|
Ring (Measure theory)
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
ฮด-Ring
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
๐-Ring
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
Algebra (Field)
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
๐-Algebra (๐-Field)
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
Dual ideal
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
|
Filter
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never |
Never |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![{\displaystyle \varnothing \not \in {\mathcal {F}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6c99d2db231b6a5af19206e95ff6d98d3019e9b) |
|
Prefilter (Filter base)
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
Never |
Never |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![{\displaystyle \varnothing \not \in {\mathcal {F}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6c99d2db231b6a5af19206e95ff6d98d3019e9b) |
|
Filter subbase
|
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
Never |
Never |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![{\displaystyle \varnothing \not \in {\mathcal {F}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d6c99d2db231b6a5af19206e95ff6d98d3019e9b) |
|
Open Topology
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![](//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Green_check.svg/13px-Green_check.svg.png) (even arbitrary ) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
Closed Topology
|
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![](//upload.wikimedia.org/wikipedia/commons/thumb/0/03/Green_check.svg/13px-Green_check.svg.png) (even arbitrary ) |
![No](//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Dark_Red_x.svg/13px-Dark_Red_x.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
![Yes](//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Check-green.svg/13px-Check-green.svg.png) |
Never
|
Is necessarily true of ![{\displaystyle {\mathcal {F}}\colon }](https://wikimedia.org/api/rest_v1/media/math/render/svg/2c806bc7022198fb7b8ddd4a0b376329bb77e00c) or, is closed under:
|
directed downward
|
finite intersections
|
finite unions
|
relative complements
|
complements in
|
countable intersections
|
countable unions
|
contains
|
contains
|
Finite Intersection Property
|
Additionally, a semiring is a ฯ-system where every complement is equal to a finite disjoint union of sets in ![{\displaystyle {\mathcal {F}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e1656ae73ede684468b360e948a8a38e6e2c461)
A semialgebra is a semiring where every complement is equal to a finite disjoint union of sets in ![{\displaystyle {\mathcal {F}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e1656ae73ede684468b360e948a8a38e6e2c461)
are arbitrary elements of and it is assumed that ![{\displaystyle {\mathcal {F}}\neq \varnothing .}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8ed685bdf4c75742b28ccec093cae48329c1a9d6)
|