S-Nitrosylation

In biochemistry, S-nitrosylation is the covalent attachment of a nitric oxide group (−NO) to a cysteine thiol within a protein to form an S-nitrosothiol (SNO). S-Nitrosylation has diverse regulatory roles in bacteria, yeast and plants and in all mammalian cells.[1] It thus operates as a fundamental mechanism for cellular signaling across phylogeny and accounts for the large part of NO bioactivity.

S-Nitrosylation is precisely targeted,[2] reversible,[3] spatiotemporally restricted[4][5] and necessary for a wide range of cellular responses,[6] including the prototypic example of red blood cell mediated autoregulation of blood flow that is essential for vertebrate life.[7] Although originally thought to involve multiple chemical routes in vivo, accumulating evidence suggests that S-nitrosylation depends on enzymatic activity, entailing three classes of enzymes (S-nitrosylases) that operate in concert to conjugate NO to proteins, drawing analogy to ubiquitinylation.[8] Beside enzymatic activity, hydrophobicity and low pka values also play a key role in regulating the process.[6]S-Nitrosylation was first described by Stamler et al. and proposed as a general mechanism for control of protein function, including examples of both active and allosteric regulation of proteins by endogenous and exogenous sources of NO.[9][10][11] The redox-based chemical mechanisms for S-nitrosylation in biological systems were also described concomitantly.[12] Important examples of proteins whose activities were subsequently shown to be regulated by S-nitrosylation include the NMDA-type glutamate receptor in the brain.[13][14] Aberrant S-nitrosylation following stimulation of the NMDA receptor would come to serve as a prototypic example of the involvement of S-nitrosylation in disease.[15] S-Nitrosylation similarly contributes to physiology and dysfunction of cardiac, airway and skeletal muscle and the immune system, reflecting wide-ranging functions in cells and tissues.[16][17][18] It is estimated that ~70% of the proteome is subject to S-nitrosylation and the majority of those sites are conserved.[19] S-Nitrosylation is also known to show up in mediating pathogenicity in Parkinson's disease systems.[20] S-Nitrosylation is thus established as ubiquitous in biology, having been demonstrated to occur in all phylogenetic kingdoms[21] and has been described as the prototypic redox-based signalling mechanism,[22]

Denitrosylation

The reverse of S-nitrosylation is denitrosylation, principally an enzymically controlled process. Multiple enzymes have been described to date, which fall into two main classes mediating denitrosylation of protein and low molecular weight SNOs, respectively. S-Nitrosoglutathione reductase (GSNOR) is exemplary of the low molecular weight class; it accelerates the decomposition of S-nitrosoglutathione (GSNO) and of SNO-proteins in equilibrium with GSNO. The enzyme is highly conserved from bacteria to humans.[23] Thioredoxin (Trx)-related proteins, including Trx1 and 2 in mammals, catalyze the direct denitrosylation of S-nitrosoproteins[24][25][26] (in addition to their role in transnitrosylation[27]). Aberrant S-nitrosylation (and denitrosylation) has been implicated in multiple diseases, including heart disease,[18] cancer and asthma[28][29][17] as well as neurological disorders, including stroke,[30] chronic degenerative diseases (e.g., Parkinson's and Alzheimer's disease)[31][32][33] and amyotrophic lateral sclerosis (ALS).[34]

Transnitrosylation

Another interesting aspect of S-nitrosylation includes the protein protein transnitrosylation, which is the transfer of an NO moiety from a SNO to the free thiols in another protein. Thioredoxin (Txn), a protein disulfide oxidoreductase for the cytosol and caspase 3 are a good example where transnitrosylation is significant in regulating cell death.[6] Another example include, the structural changes in mammalian Hb to SNO-Hb under oxygen depleted conditions helps it to bind to AE1 (Anion Exchange, a membrane protein) and in turn gets transnitrosylated the later.[35] Cdk5 (a neuronal-specific kinase) is known get nitrosylated at cysteine 83 and 157 in different neurodegenerative diseases like AD. This SNO-Cdk5 in turn is nitrosylated Drp1, the nitrosylated form of which can be considered as a therapeutic target.[36]

References

  1. ^ Anand P, Stamler JS (March 2012). "Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease". Journal of Molecular Medicine. 90 (3): 233–244. doi:10.1007/s00109-012-0878-z. PMC 3379879. PMID 22361849.
  2. ^ Sun J, Xin C, Eu JP, Stamler JS, Meissner G (September 2001). "Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO". Proceedings of the National Academy of Sciences of the United States of America. 98 (20): 11158–11162. Bibcode:2001PNAS...9811158S. doi:10.1073/pnas.201289098. PMC 58700. PMID 11562475.
  3. ^ Padgett CM, Whorton AR (September 1995). "S-nitrosoglutathione reversibly inhibits GAPDH by S-nitrosylation". The American Journal of Physiology. 269 (3 Pt 1): C739 – C749. doi:10.1152/ajpcell.1995.269.3.C739. PMID 7573405.
  4. ^ Fang M, Jaffrey SR, Sawa A, Ye K, Luo X, Snyder SH (October 2000). "Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON". Neuron. 28 (1): 183–193. doi:10.1016/s0896-6273(00)00095-7. PMID 11086993. S2CID 10533464.
  5. ^ Iwakiri Y, Satoh A, Chatterjee S, Toomre DK, Chalouni CM, Fulton D, et al. (December 2006). "Nitric oxide synthase generates nitric oxide locally to regulate compartmentalized protein S-nitrosylation and protein trafficking". Proceedings of the National Academy of Sciences of the United States of America. 103 (52): 19777–19782. Bibcode:2006PNAS..10319777I. doi:10.1073/pnas.0605907103. PMC 1750883. PMID 17170139.
  6. ^ a b c Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (February 2005). "Protein S-nitrosylation: purview and parameters". Nature Reviews. Molecular Cell Biology. 6 (2): 150–166. doi:10.1038/nrm1569. PMID 15688001. S2CID 11676184.
  7. ^ Zhang R, Hess DT, Qian Z, Hausladen A, Fonseca F, Chaube R, et al. (May 2015). "Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia". Proceedings of the National Academy of Sciences of the United States of America. 112 (20): 6425–6430. Bibcode:2015PNAS..112.6425Z. doi:10.1073/pnas.1502285112. PMC 4443356. PMID 25810253.
  8. ^ Seth D, Hess DT, Hausladen A, Wang L, Wang YJ, Stamler JS (February 2018). "A Multiplex Enzymatic Machinery for Cellular Protein S-nitrosylation". Molecular Cell. 69 (3): 451–464.e6. doi:10.1016/j.molcel.2017.12.025. PMC 5999318. PMID 29358078.
  9. ^ Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. (January 1992). "S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds". Proceedings of the National Academy of Sciences of the United States of America. 89 (1): 444–448. Bibcode:1992PNAS...89..444S. doi:10.1073/pnas.89.1.444. PMC 48254. PMID 1346070.
  10. ^ Stamler JS, Simon DI, Jaraki O, Osborne JA, Francis S, Mullins M, et al. (September 1992). "S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme". Proceedings of the National Academy of Sciences of the United States of America. 89 (17): 8087–8091. Bibcode:1992PNAS...89.8087S. doi:10.1073/pnas.89.17.8087. PMC 49861. PMID 1325644.
  11. ^ Stamler JS, Simon DI, Osborne JA, Mullins M, Jaraki O, Michel T, Singel D, Loscalzo J (1992). "Comparison of properties of nitric oxide". In Moncada S, Marletta MA, Hibbs JB (eds.). The biology of nitric oxide: proceedings of the 2nd International Meeting on the Biology of Nitric Oxide, London. London: Portland Press. pp. 20–23. OCLC 29356699.
  12. ^ Stamler JS, Singel DJ, Loscalzo J (December 1992). "Biochemistry of nitric oxide and its redox-activated forms". Science. 258 (5090): 1898–1902. Bibcode:1992Sci...258.1898S. doi:10.1126/science.1281928. PMID 1281928.
  13. ^ Lei SZ, Pan ZH, Aggarwal SK, Chen HS, Hartman J, Sucher NJ, Lipton SA (June 1992). "Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex". Neuron. 8 (6): 1087–1099. doi:10.1016/0896-6273(92)90130-6. PMID 1376999. S2CID 24701634.
  14. ^ Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, et al. (August 1993). "A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds". Nature. 364 (6438): 626–632. Bibcode:1993Natur.364..626L. doi:10.1038/364626a0. PMID 8394509. S2CID 4355073.
  15. ^ Nakamura T, Prikhodko OA, Pirie E, Nagar S, Akhtar MW, Oh CK, et al. (December 2015). "Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases". Neurobiology of Disease. 84: 99–108. doi:10.1016/j.nbd.2015.03.017. PMC 4575233. PMID 25796565.
  16. ^ Stamler JS, Sun QA, Hess DT (April 2008). "A SNO storm in skeletal muscle". Cell. 133 (1): 33–35. doi:10.1016/j.cell.2008.03.013. PMID 18394987. S2CID 15149572.
  17. ^ a b Foster MW, Hess DT, Stamler JS (September 2009). "Protein S-nitrosylation in health and disease: a current perspective". Trends in Molecular Medicine. 15 (9): 391–404. doi:10.1016/j.molmed.2009.06.007. PMC 3106339. PMID 19726230.
  18. ^ a b Beuve A, Wu C, Cui C, Liu T, Jain MR, Huang C, et al. (April 2016). "Identification of novel S-nitrosation sites in soluble guanylyl cyclase, the nitric oxide receptor". Journal of Proteomics. 138: 40–47. doi:10.1016/j.jprot.2016.02.009. PMC 5066868. PMID 26917471.
  19. ^ Stomberski CT, Hess DT, Stamler JS (April 2019). "Protein S-Nitrosylation: Determinants of Specificity and Enzymatic Regulation of S-Nitrosothiol-Based Signaling". Antioxidants & Redox Signaling. 30 (10): 1331–1351. doi:10.1089/ars.2017.7403. PMC 6391618. PMID 29130312.
  20. ^ Sircar E, Rai SR, Wilson MA, Schlossmacher MG, Sengupta R (June 2021). "Neurodegeneration: Impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson's disease". Archives of Biochemistry and Biophysics. 704: 108869. doi:10.1016/j.abb.2021.108869. PMID 33819447. S2CID 233036980.
  21. ^ Seth D, Hausladen A, Wang YJ, Stamler JS (April 2012). "Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR". Science. 336 (6080): 470–473. Bibcode:2012Sci...336..470S. doi:10.1126/science.1215643. PMC 3837355. PMID 22539721.
  22. ^ Derakhshan B, Hao G, Gross SS (July 2007). "Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide". Cardiovascular Research. 75 (2): 210–219. doi:10.1016/j.cardiores.2007.04.023. PMC 1994943. PMID 17524376.
  23. ^ Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (March 2001). "A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans". Nature. 410 (6827): 490–494. Bibcode:2001Natur.410..490L. doi:10.1038/35068596. PMID 11260719. S2CID 21280374.
  24. ^ Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, et al. (November 2005). "Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols". Journal of the American Chemical Society. 127 (45): 15815–15823. doi:10.1021/ja0529135. PMID 16277524.
  25. ^ Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA (July 2007). "Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols". Biochemistry. 46 (28): 8472–8483. doi:10.1021/bi700449x. PMID 17580965.
  26. ^ Benhar M, Forrester MT, Hess DT, Stamler JS (May 2008). "Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins". Science. 320 (5879): 1050–1054. Bibcode:2008Sci...320.1050B. doi:10.1126/science.1158265. PMC 2754768. PMID 18497292.
  27. ^ Wu C, Liu T, Wang Y, Yan L, Cui C, Beuve A, Li H (2018). "Biotin Switch Processing and Mass Spectrometry Analysis of S-Nitrosated Thioredoxin and Its Transnitrosation Targets". Nitric Oxide. Methods in Molecular Biology. Vol. 1747. pp. 253–266. doi:10.1007/978-1-4939-7695-9_20. ISBN 978-1-4939-7694-2. PMC 7136013. PMID 29600465.
  28. ^ Aranda E, López-Pedrera C, De La Haba-Rodriguez JR, Rodriguez-Ariza A (January 2012). "Nitric oxide and cancer: the emerging role of S-nitrosylation". Current Molecular Medicine. 12 (1): 50–67. doi:10.2174/156652412798376099. PMID 22082481.
  29. ^ Switzer CH, Glynn SA, Cheng RY, Ridnour LA, Green JE, Ambs S, Wink DA (September 2012). "S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer". Molecular Cancer Research. 10 (9): 1203–1215. doi:10.1158/1541-7786.MCR-12-0124. PMC 3463231. PMID 22878588.
  30. ^ Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, et al. (August 2002). "S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death". Science. 297 (5584): 1186–1190. Bibcode:2002Sci...297.1186G. doi:10.1126/science.1073634. PMID 12183632. S2CID 19797348.
  31. ^ Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, et al. (July 2004). "Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity". Proceedings of the National Academy of Sciences of the United States of America. 101 (29): 10810–10814. Bibcode:2004PNAS..10110810Y. doi:10.1073/pnas.0404161101. PMC 490016. PMID 15252205.
  32. ^ Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, et al. (May 2006). "S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration". Nature. 441 (7092): 513–517. Bibcode:2006Natur.441..513U. doi:10.1038/nature04782. PMID 16724068. S2CID 4423494.
  33. ^ Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (April 2009). "S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury". Science. 324 (5923): 102–105. Bibcode:2009Sci...324..102C. doi:10.1126/science.1171091. PMC 2823371. PMID 19342591.
  34. ^ Schonhoff CM, Matsuoka M, Tummala H, Johnson MA, Estevéz AG, Wu R, et al. (February 2006). "S-nitrosothiol depletion in amyotrophic lateral sclerosis". Proceedings of the National Academy of Sciences of the United States of America. 103 (7): 2404–2409. Bibcode:2006PNAS..103.2404S. doi:10.1073/pnas.0507243103. PMC 1413693. PMID 16461917.
  35. ^ Pawloski JR, Hess DT, Stamler JS (February 2001). "Export by red blood cells of nitric oxide bioactivity". Nature. 409 (6820): 622–626. Bibcode:2001Natur.409..622P. doi:10.1038/35054560. PMID 11214321. S2CID 4387513.
  36. ^ Nakamura T, Lipton SA (January 2013). "Emerging role of protein-protein transnitrosylation in cell signaling pathways". Antioxidants & Redox Signaling. 18 (3): 239–249. doi:10.1089/ars.2012.4703. PMC 3518546. PMID 22657837.