In mathematics , the Riesz potential is a potential named after its discoverer, the Hungarian mathematician Marcel Riesz . In a sense, the Riesz potential defines an inverse for a power of the Laplace operator on Euclidean space. They generalize to several variables the Riemann–Liouville integrals of one variable.
Definition
If 0 < α < n , then the Riesz potential I α f of a locally integrable function f on R n is the function defined by
(
I
α
f
)
(
x
)
=
1
c
α
∫
R
n
f
(
y
)
|
x
−
y
|
n
−
α
d
y
{\displaystyle (I_{\alpha }f)(x)={\frac {1}{c_{\alpha }}}\int _{\mathbb {R} ^{n}}{\frac {f(y)}{|x-y|^{n-\alpha }}}\,\mathrm {d} y}
1
where the constant is given by
c
α
=
π
n
/
2
2
α
Γ
(
α
/
2
)
Γ
(
(
n
−
α
)
/
2
)
.
{\displaystyle c_{\alpha }=\pi ^{n/2}2^{\alpha }{\frac {\Gamma (\alpha /2)}{\Gamma ((n-\alpha )/2)}}.}
This singular integral is well-defined provided f decays sufficiently rapidly at infinity, specifically if f ∈ Lp (R n ) with 1 ≤ p < n /α . In fact, for any 1 ≤ p (p >1 is classical, due to Sobolev, while for p =1 see (Schikorra, Spector & Van Schaftingen 2014 ), the rate of decay of f and that of I α f are related in the form of an inequality (the Hardy–Littlewood–Sobolev inequality )
‖
I
α
f
‖
p
∗
≤
C
p
‖
R
f
‖
p
,
p
∗
=
n
p
n
−
α
p
,
{\displaystyle \|I_{\alpha }f\|_{p^{*}}\leq C_{p}\|Rf\|_{p},\quad p^{*}={\frac {np}{n-\alpha p}},}
where
R
f
=
D
I
1
f
{\displaystyle Rf=DI_{1}f}
is the vector-valued Riesz transform . More generally, the operators I α are well-defined for complex α such that 0 < Re α < n .
The Riesz potential can be defined more generally in a weak sense as the convolution
I
α
f
=
f
∗
K
α
{\displaystyle I_{\alpha }f=f*K_{\alpha }}
where K α is the locally integrable function:
K
α
(
x
)
=
1
c
α
1
|
x
|
n
−
α
.
{\displaystyle K_{\alpha }(x)={\frac {1}{c_{\alpha }}}{\frac {1}{|x|^{n-\alpha }}}.}
The Riesz potential can therefore be defined whenever f is a compactly supported distribution. In this connection, the Riesz potential of a positive Borel measure μ with compact support is chiefly of interest in potential theory because I α μ is then a (continuous) subharmonic function off the support of μ, and is lower semicontinuous on all of R n .
Consideration of the Fourier transform reveals that the Riesz potential is a Fourier multiplier .[ 1]
In fact, one has
K
α
^
(
ξ
)
=
∫
R
n
K
α
(
x
)
e
−
2
π
i
x
ξ
d
x
=
|
2
π
ξ
|
−
α
{\displaystyle {\widehat {K_{\alpha }}}(\xi )=\int _{\mathbb {R} ^{n}}K_{\alpha }(x)e^{-2\pi ix\xi }\,\mathrm {d} x=|2\pi \xi |^{-\alpha }}
and so, by the convolution theorem ,
I
α
f
^
(
ξ
)
=
|
2
π
ξ
|
−
α
f
^
(
ξ
)
.
{\displaystyle {\widehat {I_{\alpha }f}}(\xi )=|2\pi \xi |^{-\alpha }{\hat {f}}(\xi ).}
The Riesz potentials satisfy the following semigroup property on, for instance, rapidly decreasing continuous functions
I
α
I
β
=
I
α
+
β
{\displaystyle I_{\alpha }I_{\beta }=I_{\alpha +\beta }}
provided
0
<
Re
α
,
Re
β
<
n
,
0
<
Re
(
α
+
β
)
<
n
.
{\displaystyle 0<\operatorname {Re} \alpha ,\operatorname {Re} \beta <n,\quad 0<\operatorname {Re} (\alpha +\beta )<n.}
Furthermore, if 0 < Re α < n –2 , then
Δ
I
α
+
2
=
I
α
+
2
Δ
=
−
I
α
.
{\displaystyle \Delta I_{\alpha +2}=I_{\alpha +2}\Delta =-I_{\alpha }.}
One also has, for this class of functions,
lim
α
→
0
+
(
I
α
f
)
(
x
)
=
f
(
x
)
.
{\displaystyle \lim _{\alpha \to 0^{+}}(I_{\alpha }f)(x)=f(x).}
See also
Notes
References
Landkof, N. S. (1972), Foundations of modern potential theory , Berlin, New York: Springer-Verlag , MR 0350027
Riesz, Marcel (1949), "L'intégrale de Riemann-Liouville et le problème de Cauchy", Acta Mathematica , 81 : 1– 223, doi :10.1007/BF02395016 , ISSN 0001-5962 , MR 0030102 .
Solomentsev, E.D. (2001) [1994], "Riesz potential" , Encyclopedia of Mathematics , EMS Press
Schikorra, Armin; Spector, Daniel; Van Schaftingen, Jean (2014), An
L
1
{\displaystyle L^{1}}
-type estimate for Riesz potentials , arXiv :1411.2318 , doi :10.4171/rmi/937 , S2CID 55497245
Stein, Elias (1970), Singular integrals and differentiability properties of functions , Princeton, NJ: Princeton University Press , ISBN 0-691-08079-8
Samko, Stefan G. (1998), "A new approach to the inversion of the Riesz potential operator" (PDF) , Fractional Calculus and Applied Analysis , 1 (3): 225– 245