In mathematics, the ramification theory of valuations studies the set of extensions of a valuationv of a fieldK to an extensionL of K. It is a generalization of the ramification theory of Dedekind domains.[1][2]
The structure of the set of extensions is known better when L/K is Galois.
Decomposition group and inertia group
Let (K, v) be a valued field and let L be a finiteGalois extension of K. Let Sv be the set of equivalenceclasses of extensions of v to L and let G be the Galois group of L over K. Then G acts on Sv by σ[w] = [w ∘ σ] (i.e. w is a representative of the equivalence class [w] ∈ Sv and [w] is sent to the equivalence class of the composition of w with the automorphismσ : L → L; this is independent of the choice of w in [w]). In fact, this action is transitive.
Given a fixed extension w of v to L, the decomposition group of w is the stabilizer subgroupGw of [w], i.e. it is the subgroup of G consisting of all elements that fix the equivalence class [w] ∈ Sv.
Let mw denote the maximal ideal of w inside the valuation ringRw of w. The inertia group of w is the subgroup Iw of Gw consisting of elements σ such that σx ≡ x (mod mw) for all x in Rw. In other words, Iw consists of the elements of the decomposition group that act trivially on the residue field of w. It is a normal subgroup of Gw.
Ramification groups are a refinement of the Galois group of a finite Galois extension of local fields. We shall write for the valuation, the ring of integers and its maximal ideal for . As a consequence of Hensel's lemma, one can write for some where is the ring of integers of .[3] (This is stronger than the primitive element theorem.) Then, for each integer , we define to be the set of all that satisfies the following equivalent conditions.
(i) operates trivially on
(ii) for all
(iii)
The group is called -th ramification group. They form a decreasing filtration,
In fact, the are normal by (i) and trivial for sufficiently large by (iii). For the lowest indices, it is customary to call the inertia subgroup of because of its relation to splitting of prime ideals, while the wild inertia subgroup of . The quotient is called the tame quotient.
The Galois group and its subgroups are studied by employing the above filtration or, more specifically, the corresponding quotients. In particular,
is tamely ramified (i.e., the ramification index is prime to the residue characteristic.)
The study of ramification groups reduces to the totally ramified case since one has for .
One also defines the function . (ii) in the above shows is independent of choice of and, moreover, the study of the filtration is essentially equivalent to that of .[5] satisfies the following: for ,
Fix a uniformizer of . Then induces the injection where . (The map actually does not depend on the choice of the uniformizer.[6]) It follows from this[7]
Let K be the extension of Q2 generated by . The conjugates of are , , .
A little computation shows that the quotient of any two of these is a unit. Hence they all generate the same ideal; call it π. generates π2; (2)=π4.
Now , which is in π5.
and which is in π3.
Various methods show that the Galois group of K is , cyclic of order 4. Also:
and
so that the different
satisfies X4 − 4X2 + 2, which has discriminant 2048 = 211.
Ramification groups in upper numbering
If is a real number , let denote where i the least integer . In other words, Define by[12]
where, by convention, is equal to if and is equal to for .[13] Then for . It is immediate that is continuous and strictly increasing, and thus has the continuous inverse function defined on . Define
.
is then called the v-th ramification group in upper numbering. In other words, . Note . The upper numbering is defined so as to be compatible with passage to quotients:[14] if is normal in , then
for all
(whereas lower numbering is compatible with passage to subgroups.)
Herbrand's theorem
Herbrand's theorem states that the ramification groups in the lower numbering satisfy (for where is the subextension corresponding to ), and that the ramification groups in the upper numbering satisfy .[15][16] This allows one to define ramification groups in the upper numbering for infinite Galois extensions (such as the absolute Galois group of a local field) from the inverse system of ramification groups for finite subextensions.
The upper numbering for an abelian extension is important because of the Hasse–Arf theorem. It states that if is abelian, then the jumps in the filtration are integers; i.e., whenever is not an integer.[17]
The upper numbering is compatible with the filtration of the norm residue group by the unit groups under the Artin isomorphism. The image of under the isomorphism
Serre, Jean-Pierre (1967). "VI. Local class field theory". In Cassels, J.W.S.; Fröhlich, A. (eds.). Algebraic number theory. Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the International Mathematical Union. London: Academic Press. pp. 128–161. Zbl0153.07403.