Cell cycle checkpoint protein RAD17 is a protein that in humans is encoded by the RAD17gene.[5][6]
Function
The protein encoded by this gene is highly similar to the gene product of Schizosaccharomyces pombe rad17, a cell cycle checkpoint gene required for cell cycle arrest and DNA damage repair in response to DNA damage. This protein shares strong similarity with DNA replication factor C (RFC), and can form a complex with RFCs. This protein binds to chromatin prior to DNA damage and is phosphorylated by ATR after the damage. This protein recruits the RAD1-RAD9-HUS1 checkpoint protein complex onto chromatin after DNA damage, which may be required for its phosphorylation. The phosphorylation of this protein is required for the DNA-damage-induced cell cycle G2 arrest, and is thought to be a critical early event during checkpoint signaling in DNA-damaged cells. Eight alternatively spliced transcript variants of this gene, which encode four distinct proteins, have been reported.[7]
Meiosis
During meiosis in yeast and in mammals, RAD17 protein functions as a DNA damage sensor promoting DNA checkpoint control.[8] In yeast, the RAD17 protein facilitates proper assembly of the meiotic crossover recombination complex containing the RAD51 protein, thus promoting efficient repair of meiotic DNA double-strand breaks.[9] During male meiosis in maize (Zea mays), the ZmRAD17 gene is involved in repair of DNA double strand breaks, likely by promoting synaptonemal complex assembly.[8]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^Bao S, Shen X, Shen K, Liu Y, Wang XF (December 1998). "The mammalian Rad24 homologous to yeast Saccharomyces cerevisiae Rad24 and Schizosaccharomyces pombe Rad17 is involved in DNA damage checkpoint". Cell Growth & Differentiation. 9 (12): 961–967. PMID9869296.
^ abcBao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A, et al. (June 2001). "ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses". Nature. 411 (6840): 969–974. Bibcode:2001Natur.411..969B. doi:10.1038/35082110. PMID11418864. S2CID4429058.
Dean FB, Lian L, O'Donnell M (December 1998). "cDNA cloning and gene mapping of human homologs for Schizosaccharomyces pombe rad17, rad1, and hus1 and cloning of homologs from mouse, Caenorhabditis elegans, and Drosophila melanogaster". Genomics. 54 (3): 424–436. doi:10.1006/geno.1998.5587. PMID9878245.
Bluyssen HA, Naus NC, van Os RI, Jaspers I, Hoeijmakers JH, de Klein A (January 1999). "Human and mouse homologs of the Schizosaccharomyces pombe rad17+ cell cycle checkpoint control gene". Genomics. 55 (2): 219–228. doi:10.1006/geno.1998.5642. PMID9933569.
Li L, Peterson CA, Kanter-Smoler G, Wei YF, Ramagli LS, Sunnerhagen P, et al. (March 1999). "hRAD17, a structural homolog of the Schizosaccharomyces pombe RAD17 cell cycle checkpoint gene, stimulates p53 accumulation". Oncogene. 18 (9): 1689–1699. doi:10.1038/sj.onc.1202469. PMID10208430. S2CID19841336.
Bao S, Chang MS, Auclair D, Sun Y, Wang Y, Wong WK, et al. (May 1999). "HRad17, a human homologue of the Schizosaccharomyces pombe checkpoint gene rad17, is overexpressed in colon carcinoma". Cancer Research. 59 (9): 2023–2028. PMID10232579.
von Deimling F, Scharf JM, Liehr T, Rothe M, Kelter AR, Albers P, et al. (1999). "Human and mouse RAD17 genes: identification, localization, genomic structure and histological expression pattern in normal testis and seminoma". Human Genetics. 105 (1–2): 17–27. doi:10.1007/s004390051058. PMID10480350.
Bao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A, et al. (June 2001). "ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses". Nature. 411 (6840): 969–974. Bibcode:2001Natur.411..969B. doi:10.1038/35082110. PMID11418864. S2CID4429058.
Chen MS, Higashikubo R, Laszlo A, Roti Roti J (October 2001). "Multiple alternative splicing forms of human RAD17 and their differential response to ionizing radiation". Gene. 277 (1–2): 145–152. doi:10.1016/S0378-1119(01)00692-8. PMID11602352.