In mathematics, especially ring theory, the class of Frobenius rings and their generalizations are the extension of work done on Frobenius algebras. Perhaps the most important generalization is that of quasi-Frobenius rings (QF rings), which are in turn generalized by right pseudo-Frobenius rings (PF rings) and right finitely pseudo-Frobenius rings (FPF rings). Other diverse generalizations of quasi-Frobenius rings include QF-1, QF-2 and QF-3 rings.
R is a cogenerator of Mod-R and is a left Kasch ring.
A ring R is right finitely pseudo-Frobenius if and only if every finitely generated faithful right R module is a generator of Mod-R.
Thrall's QF-1,2,3 generalizations
In the seminal article (Thrall 1948), R. M. Thrall focused on three specific properties of (finite-dimensional) QF algebras and studied them in isolation. With additional assumptions, these definitions can also be used to generalize QF rings. A few other mathematicians pioneering these generalizations included K. Morita and H. Tachikawa.
R is QF-1 if all faithful left modules and faithful right modules are balanced modules.
R is QF-2 if each indecomposable projective right module and each indecomposable projective left module has a unique minimal submodule. (I.e. they have simple socles.)
R is QF-3 if the injective hulls E(RR) and E(RR) are both projective modules.
The numbering scheme does not necessarily outline a hierarchy. Under more lax conditions, these three classes of rings may not contain each other. Under the assumption that R is left or right Artinian however, QF-2 rings are QF-3. There is even an example of a QF-1 and QF-3 ring which is not QF-2.
Examples
Every Frobenius k algebra is a Frobenius ring.
Every semisimple ring is quasi-Frobenius, since all modules are projective and injective. Even more is true however: semisimple rings are all Frobenius. This is easily verified by the definition, since for semisimple rings and J = rad(R) = 0.
The quotient ring is QF for any positive integer n>1.
Commutative Artinian serial rings are all Frobenius, and in fact have the additional property that every quotient ring R/I is also Frobenius. It turns out that among commutative Artinian rings, the serial rings are exactly the rings whose (nonzero) quotients are all Frobenius.
Many exotic PF and FPF rings can be found as examples in Faith & Page (1984)
The definitions for QF, PF and FPF are easily seen to be categorical properties, and so they are preserved by Morita equivalence, however being a Frobenius ring is not preserved.
For one-sided Noetherian rings the conditions of left or right PF both coincide with QF, but FPF rings are still distinct.
A finite-dimensional algebra R over a field k is a Frobenius k-algebra if and only if R is a Frobenius ring.
QF rings have the property that all of their modules can be embedded in a freeR module. This can be seen in the following way. A module M embeds into its injective hullE(M), which is now also projective. As a projective module, E(M) is a summand of a free module F, and so E(M) embeds in F with the inclusion map. By composing these two maps, M is embedded in F.
Faith, Carl; Page, Stanley (1984), FPF Ring Theory: Faithful modules and generators of Mod-$R$, London Mathematical Society Lecture Note Series No. 88, Cambridge University Press, doi:10.1017/CBO9780511721250, ISBN0-521-27738-8, MR0754181
Nicholson, W. K.; Yousif, M. F. (2003), Quasi-Frobenius rings, Cambridge University Press, ISBN0-521-81593-2
References
For QF-1, QF-2, QF-3 rings:
Morita, Kiiti (1958), "On algebras for which every faithful representation is its own second commutator", Math. Z., 69: 429–434, doi:10.1007/bf01187420, ISSN0025-5874