Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]−. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.[1]
Structure and preparation
PCC consists of a pyridinium cation, [C5H5NH]+, and a tetrahedral chlorochromate anion, [CrO3Cl]−. Related salts are also known, such as 1-butylpyridinium chlorochromate, [C5H5N(C4H9)][CrO3Cl] and potassium chlorochromate.
In one alternative method, formation of toxic chromyl chloride (CrO2Cl2) fumes during the making of the aforementioned solution were minimized by simply changing the order of addition: a cold solution of pyridine in concentrated hydrochloric acid was added to solid chromium trioxide under stirring.[5]
With tertiary alcohols, the chromate ester formed from PCC can isomerize via a [3,3]-sigmatropic reaction and following oxidation yield an enone, in a reaction known as the Babler oxidation:
This type of oxidative transposition reaction has been synthetically utilized, e.g. for the synthesis of morphine.[10]
Using other common oxidants in the place of PCC usually leads to dehydration, because such alcohols cannot be oxidized directly.
Other reactions
PCC also converts suitable unsaturated alcohols and aldehydes to cyclohexenones. This pathway, an oxidative cationic cyclization, is illustrated by the conversion of (−)-citronellol to (−)-pulegone.
^Corey, E. J.; Suggs, J. W. (1975). "Pyridinium Chlorochromate. An Efficient Reagent for Oxidation of Primary and Secondary Alcohols to Carbonyl Compounds". Tetrahedron Letters. 16 (31): 2647–2650. doi:10.1016/S0040-4039(00)75204-X.
^Agarwal, S.; Tiwari, H. P.; Sharma, J. P. (1990). "Pyridinium Chlorochromate: An Improved Method for Its Synthesis and Use of Anhydrous Acetic Acid as Catalyst for Oxidation Reactions". Tetrahedron. 46 (12): 4417–4420. doi:10.1016/S0040-4020(01)86776-4.
Tojo, G.; Fernández, M. (2006). Tojo, G. (ed.). Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Basic Reactions in Organic Synthesis. New York: Springer. ISBN978-0-387-23607-0.