Protocol spoofingProtocol spoofing is used in data communications to improve performance in situations where an existing protocol is inadequate, for example due to long delays or high error rates. Spoofing techniquesIn most applications of protocol spoofing, a communications device such as a modem or router simulates ("spoofs") the remote endpoint of a connection to a locally attached host, while using a more appropriate protocol to communicate with a compatible remote device that performs the equivalent spoof at the other end of the communications link. File transfer spoofingError correction and file transfer protocols typically work by calculating a checksum or CRC for a block of data known as a packet, and transmitting the resulting number at the end of the packet. At the other end of the connection, the receiver re-calculates the number based on the data it received and compares that result to what was sent from the remote machine. If the two match the packet was transmitted correctly, and the receiver sends an The time to transmit the The next packet of data cannot be sent until the Protocol spoofing addresses this problem by having the local modem recognize that a data transfer is underway, often by looking for packet headers. When these are seen, the modem then looks for the end of the packet, normally by knowing the number of bytes in a single packet. XMODEM, for instance, has 132 bytes in a packet due to the header and checksum being added to the 128 bytes of actual data. When the modem sees the packet has ended, it immediately sends of spoofed Protocol spoofing was also widely used with another feature of earlier high-speed modems. Before the introduction of echo cancellation in V.32 and later protocols, high-speed modems typically had a very slow "backchannel" for sending things like these In this case, the spoofing allowed the sending modem to continue sending packets as fast as it could. At the same time, the modem on the remote receiving end dropped the TCP spoofingTCP connections may suffer from performance limitations due to insufficient window size for links with high bandwidth-delay product, and on long-delay links such as those over GEO satellites, TCP's slow start algorithm significantly delays connection startup. A spoofing router terminates the TCP connection locally and translates the TCP to protocols tailored to long delays over the satellite link such as XTP. RIP/SAP spoofingSAP and RIP periodically broadcast network information even if routing/service tables are unchanged. dial-on-demand WAN links in IPX networks therefore never become idle and won't disconnect. A spoofing router or modem will intercept the SAP and RIP broadcasts, and re-broadcast the advertisements from its own routing/service table that it only updates when the link is active for other reasons. See alsoExternal links
|
Portal di Ensiklopedia Dunia