Prime ringIn abstract algebra, a nonzero ring R is a prime ring if for any two elements a and b of R, arb = 0 for all r in R implies that either a = 0 or b = 0. This definition can be regarded as a simultaneous generalization of both integral domains and simple rings. Although this article discusses the above definition, prime ring may also refer to the minimal non-zero subring of a field, which is generated by its identity element 1, and determined by its characteristic. For a characteristic 0 field, the prime ring is the integers, and for a characteristic p field (with p a prime number) the prime ring is the finite field of order p (cf. Prime field).[1] Equivalent definitionsA ring R is prime if and only if the zero ideal {0} is a prime ideal in the noncommutative sense. This being the case, the equivalent conditions for prime ideals yield the following equivalent conditions for R to be a prime ring:
Using these conditions it can be checked that the following are equivalent to R being a prime ring:
Examples
Properties
Notes
References
|
Portal di Ensiklopedia Dunia