In algebra , a parabolic Lie algebra
p
{\displaystyle {\mathfrak {p}}}
is a subalgebra of a semisimple Lie algebra
g
{\displaystyle {\mathfrak {g}}}
satisfying one of the following two conditions:
p
{\displaystyle {\mathfrak {p}}}
contains a maximal solvable subalgebra (a Borel subalgebra ) of
g
{\displaystyle {\mathfrak {g}}}
;
the orthogonal complement with respect to the Killing form of
p
{\displaystyle {\mathfrak {p}}}
in
g
{\displaystyle {\mathfrak {g}}}
is the nilradical of
p
{\displaystyle {\mathfrak {p}}}
.
These conditions are equivalent over an algebraically closed field of characteristic zero , such as the complex numbers . If the field
F
{\displaystyle \mathbb {F} }
is not algebraically closed, then the first condition is replaced by the assumption that
p
⊗
F
F
¯
{\displaystyle {\mathfrak {p}}\otimes _{\mathbb {F} }{\overline {\mathbb {F} }}}
contains a Borel subalgebra of
g
⊗
F
F
¯
{\displaystyle {\mathfrak {g}}\otimes _{\mathbb {F} }{\overline {\mathbb {F} }}}
where
F
¯
{\displaystyle {\overline {\mathbb {F} }}}
is the algebraic closure of
F
{\displaystyle \mathbb {F} }
.
Examples
For the general linear Lie algebra
g
=
g
l
n
(
F
)
{\displaystyle {\mathfrak {g}}={\mathfrak {gl}}_{n}(\mathbb {F} )}
, a parabolic subalgebra is the stabilizer of a partial flag of
F
n
{\displaystyle \mathbb {F} ^{n}}
, i.e. a sequence of nested linear subspaces. For a complete flag, the stabilizer gives a Borel subalgebra. For a single linear subspace
F
k
⊂
F
n
{\displaystyle \mathbb {F} ^{k}\subset \mathbb {F} ^{n}}
, one gets a maximal parabolic subalgebra
p
{\displaystyle {\mathfrak {p}}}
, and the space of possible choices is the Grassmannian
G
r
(
k
,
n
)
{\displaystyle \mathrm {Gr} (k,n)}
.
In general, for a complex simple Lie algebra
g
{\displaystyle {\mathfrak {g}}}
, parabolic subalgebras are in bijection with subsets of simple roots , i.e. subsets of the nodes of the Dynkin diagram .
See also
Bibliography
Baston, Robert J.; Eastwood, Michael G. (2016) [1989], The Penrose Transform: its Interaction with Representation Theory , Dover, ISBN 9780486816623
Fulton, William ; Harris, Joe (1991). Representation theory. A first course . Graduate Texts in Mathematics , Readings in Mathematics. Vol. 129. New York: Springer-Verlag. doi :10.1007/978-1-4612-0979-9 . ISBN 978-0-387-97495-8 . MR 1153249 . OCLC 246650103 .
Grothendieck, Alexander (1957), "Sur la classification des fibrés holomorphes sur la sphère de Riemann", Amer. J. Math. , 79 (1): 121– 138, doi :10.2307/2372388 , JSTOR 2372388 .
Humphreys, J. (1972), Linear Algebraic Groups , Springer, ISBN 978-0-387-90108-4