Paleoparasitology (or "palaeoparasitology") is the study of parasites from the past,[2] and their interactions with hosts and vectors; it is a subfield of paleontology, the study of living organisms from the past. Some authors define this term more narrowly, as "Paleoparasitology is the study of parasites in archaeological material." (p. 103)[3] K.J. Reinhard suggests that the term "archaeoparasitology" be applied to "... all parasitological remains excavated from archaeological contexts ... derived from human activity" and that "the term 'paleoparasitology' be applied to studies of nonhuman, paleontological material." (p. 233)[4] This article follows Reinhard's suggestion and discusses the protozoan and animal parasites of non-human animals and plants from the past, while those from humans and our hominid ancestors are covered in archaeoparasitology.
Sources of material
Cysts found in a corpse in a late Roman grave in France, interpreted [5] as signs of probable hydatidosis and capillariasis
The primary sources of paleoparasitological material include mummified tissues,[6][5][7]coprolites (fossilised dung) from mammals[8] or dinosaurs,[9]fossils,[10] and amber inclusions.[11] Hair,[12] skins,[13] and feathers[14] also yield ectoparasite remains. Some archaeological artifacts document the presence of animal parasites. One example is the depiction of what appear to be mites in the ear of a "hyaena-like" animal in a tomb painting from ancient Thebes.[15]
Some parasites leave marks or traces (ichnofossils) on host remains, which persist in the fossil record in the absence of structural remains of the parasite. Parasitic ichnofossils include plant remains which exhibit characteristic signs of parasitic insect infestation, such as galls or leaf mines[16][17][18][19] and certain anomalies seen in invertebrate endoskeletal remains.[20][21][22][23][24][25]
Plant and animal parasites have been found in samples from a broad spectrum of geological periods, including the Holocene (samples over 10,000 years old),[26]Pleistocene (over 550,000 years old),[27]Eocene (over 44 million years old),[28]Cretaceous (over 100 million years)[29] and even Lower Cambrian (over 500 million years).[30]
Evidence of parasitism
One of the most daunting tasks involved in studying parasitic relationships from the past is supporting the assertion that the relationship between two organisms is indeed parasitic.[31] Organisms living in "close association" with each other may exhibit one of several different types of trophic relationships, such as parasitism, mutualism, and commensalism. Demonstration of true parasitism between existing species typically involves observing the harmful effects of parasites on a presumed host. Experimental infection of the presumed host, followed by recovery of viable parasites from that host also supports any claim of true parasitism. Obviously such experiments are not possible with specimens of extinct organisms found in paleontological contexts.
Assumptions of true parasitism in paleontological settings which are based on analogy to known present-day parasitic relationships may not be valid, due to host-specificity. For example, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense are both devastating human parasites, but the related subspecies Trypanosoma brucei brucei will infect a number of animal hosts, but cannot even survive in the human blood stream, much less reproduce and infect a human host.[32] So a related (or unidentifiable) species of Trypanosoma found in a paleontological or archaeological context may not be a true human parasite, even though it appears identical (or very similar) to the modern parasitic forms.
The most convincing evidence of paleoparasitism is obtained when a presumed parasite is found in direct association with its presumed host, in a context that is consistent with known host-parasite associations. Some examples include helminths caught in amber in the process of escaping from the body of an insect,[33] lice found in the fur of guinea pig mummies,[34] protozoans in the alimentary canal of flies in amber,[35][36]nematode larvae found embedded in animal coprolites,[37][38] and a mite caught in amber in the process of apparently feeding on a spider.[39] In 2023, nematode eggs and possibly protozoan cysts were found in the Late Triassic coprolite of phytosaur.[40] Some holes in the mandibles of several specimens of Tyrannosaurus may have been caused by Trichomonas-like parasites.[41]
Fossil organisms which are related to present-day parasites often possess the morphological features associated with a parasitic lifestyle, such as blood-feeding mouthparts.[42] So fossil ticks[43][44] and hematophagous insects[45] are generally assumed to be ectoparasites, even when their remains are found in the absence of a host. The ancient flea Saurophthirus found in Early Cretaceous deposits had a sucking proboscis and a stretching abdomen, which indicates the parasitic lifestyle of this insect.[46][1]
The presence of structures resembling leaf miner trails in leaf fossils provide indirect evidence of parasitism, even if remains of the parasite are not recovered.[47] The dramatic tissue aberrations seen in present-day plant galls and gall-like structures in some invertebrates are direct physiological reactions to the presence of either metazoan parasites or microbialpathogens. Similar structures seen in fossil plant[48] and invertebrate[49] remains are often interpreted as evidence of paleoparasitism.
Host-parasite interactions today are often exploited by other species, and similar examples have been found in the fossil record of plant galls and leaf mines. For example, there are species of wasps, called inquilines, which are unable to induce their own plant galls, so they simply take up residence in the galls that are made by other wasps.[19] Another example is the predation of plant galls or leaf mines, to eat the trapped insect larva inside the gall or mine.[50]
Knowledge gained from ancient animal and plant parasites
Studies of parasite remains and traces from the past have yielded a vast catalog of ancient host-parasite associations.[10][51][52][53] Genetic sequence data obtained directly from ancient animal parasites,[54] and inferences of past relationships based on genetic sequences of existing parasite groups are also being applied to paleoparasitological questions.[55][56] Data obtained by all of these methods are constantly improving our understanding of the origin and evolution of the parasites themselves[57] and their vectors,[58] and of the host-parasite and vector-parasite associations.[59][60][61][62][63]
In some cases, presumed host-parasite relationships of the past seem quite different from those known in the present, such as a fly which appears to be a parasite of a mite[64]
Paleoparasitological studies have also provided insight into questions outside the realm of parasitology. Examples include the migration and phylogeography of marine mammal hosts,[65] the identity of domestic animal bones based on the known hosts of parasite remains found at the site,[66] and the possible role of climatic changes on animal host genetic diversity.[67]
^Nezamabadi M, Mashkour M, Aali A, Stöllner T, Le Bailly M (2013). "Identification of Taeniasp. In a Natural Human Mummy (Third Century BC) from the Chehrabad Salt Mine in Iran". The Journal of Parasitology. 99 (3): 570–572. doi:10.1645/12-113.1. PMID23240712. S2CID26253984.
^Dittmar; de la Cruz, K.; Ribbeck, R.; Daugschies, A. (2003). "Paläoparasitologische Analyse von Meerschweinchenmumien der Chiribaya-Kultur (900-1100 AD)". Berliner und Münchener Tierärztliche Wochenschrift. 116 (1–2): 45–49.
^Poinar, G.O. Jr. and R. Poinar (1999) The Amber Forest: A Reconstruction of a Vanished World. Princeton University Press, xviii, 239 pp.
^Penalver, E.; Grimaldi, D. (2005). "Assemblages of mammalian hair and blood-feeding midges (Insecta: Diptera: Psychodidae: Phlebotominae) in Miocene amber". Transactions of the Royal Society of Edinburgh: Earth Sciences. 96 (2): 177–195. doi:10.1017/S0263593300001292. S2CID85422613.
^Martill, D.M.; Davis, P.G. (2001). "A feather with possible ectoparasite eggs from the Crato Formation (Lower Cretaceous, Aptian) of Brazil". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 219 (3): 241–259. doi:10.1127/njgpa/219/2001/241.
^Scott, A.C., J. Stephenson, and M.E. Collinson (1994) The fossil record of leaves with galls[permanent dead link]. In: M.A.J. Williams (ed) Plant Gall - Organisms, Interactions, and Populations. Systematics Association Special Volume Series, Vol. 49. Clarendon Press: Oxford, pp. 447-470.
^Woodcock, D.W.; Maekawa, S. (2006). "Fossil leaf galls preserved in Honolulu volcanic series rocks". Bishop Museum Occasional Papers. 88: 20–22.
^Ruiz, G.M.; Lindberg, D.R. (1989). "A fossil record for trematodes: Extent and potential uses". Lethaia. 22 (4): 431–438. doi:10.1111/j.1502-3931.1989.tb01447.x.
^Donovan, S. K. (2015). "A Prejudiced Review of Ancient Parasites and Their Host Echinoderms: CSI Fossil Record or Just an Excuse for Speculation?". Advances in Parasitology. 90: 291–328. doi:10.1016/bs.apar.2015.05.003. ISBN9780128040010. PMID26597070.
^Larew, H.G. (1987). "Two cynipid wasp acorn galls preserved in the La Brea Tar Pits (early Holocene)". Proceedings of the Entomological Society of Washington. 89 (4): 831–833.
^Jouy-Avantin, F.; Combes, C.; Lumley, H.; Miskovsky, J.-C.; Moné, H. (1999). "Helminth eggs in animal coprolites from a Middle Pleistocene site in Europe". Journal of Parasitology. 85 (2): 376–379. doi:10.2307/3285652. JSTOR3285652. PMID10219325.
^Wappler, T., V.S. Smith, and R.C. Dalgleish (2004) Scratching an ancient itch: An Eocene bird louse fossil. Proceedings of the Royal Society of London, Series B. Biological Sciences 271(Suppl 5):s255-s258.
^Poinar, G. Jr.; Telford, S. R. (2005). "Paleohaemoproteus burmacis gen.n., sp.n. (Haemosporidia: Plasmodidae) from an Early Cretaceous biting midge (Diptera: Ceratopogonidae)". Parasitology. 131 (1): 79–84. doi:10.1017/s0031182005007298. PMID16038399. S2CID23877176.
^Poinar, G. Jr.; Buckley, R. (2006). "Nematode (Nematoda: Mermithidae) and hairworm (Nematomorpha: Chordodidae) parasites in Early Cretaceous amber". Journal of Invertebrate Pathology. 93 (1): 36–41. doi:10.1016/j.jip.2006.04.006. PMID16737709.
^Poinar, G. Jr.; Telford, S. R. (2005). "Paleohaemoproteus burmacis gen.n., sp.n. (Haemospororidia: Plasmodiidae) from an Early Cretaceous biting midge (Diptera: Ceratopogonidae)". Parasitology. 131 (1): 79–84. doi:10.1017/S0031182005007298. PMID16038399. S2CID23877176.
^Wunderlich, J (2004). "Fossil spiders (Araneae) of the superfamily Dysderoidea in Baltic and Dominican amber, with revised family diagnoses". Beiträge zur Araneologie. 3A: 633–746.
^De la Fuente, J (2003). "The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida)". Experimental and Applied Acarology. 29 (3–4): 331–344. doi:10.1023/a:1025824702816. PMID14635818. S2CID11271627.
^Poinar, G. Jr.; Buckley, R. (2008). "Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from Lower Cretaceous Burmese amber". Proceedings of the Entomological Society of Washington. 110 (2): 445–450. doi:10.4289/07-014.1. S2CID85577802.
^Lukashevich, E.D. and M.B. Mostovski (2003) Hematophagous insects in the fossil record. Paleontologicheskii Zhurnal 2003(2):48-56 (Russian) / Paleontological Journal 37(2):153-161 (English).
^Ponomarenko, A.G. (1976) A new insect from the Cretaceous of Transbaikalia, a possible parasite of pterosaurians. Paleontological Journal 10(3):339-343 (English) / Paleontologicheskii Zhurnal 1976(3):102-106 (Russian)
^Srivastava, A.K. (2007). "Fossil evidences of gall-inducing arthropod-plant interactions in the Indian subcontinent". Oriental Insects. 41: 213–222. doi:10.1080/00305316.2007.10417505. S2CID84697925.
^Neumann, C.; Wisshak, M. (2006). "A foraminiferal parasite on the sea urchin Echinocorys: Ichnological evidence from the Late Cretaceous (Lower Maastrichtian, northern Germany)". Ichnos. 13 (3): 185–190. Bibcode:2006Ichno..13..185N. doi:10.1080/10420940600853954. S2CID129030820.
^Krassilov, V (2008). "Mine and gall predation as top-down regulation in the plant-insect systems from the Cretaceous of Negev, Israel". Palaeogeography, Palaeoclimatology, Palaeoecology. 261 (3–4): 261–269. Bibcode:2008PPP...261..261K. doi:10.1016/j.palaeo.2008.01.017.
^Leung, T. L. F. (2016). "Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?". Biological Reviews. 92 (1): 410–430. doi:10.1111/brv.12238. PMID26538112. S2CID26088735.
^Stevens, J.R.; Wallman, J.F. (2006). "The evolution of myiasis in humans and other animals in the Old and New Worlds. Part I. Phylogenetic analyses". Trends in Parasitology. 22 (3): 129–136. doi:10.1016/j.pt.2006.01.008. PMID16459148.
^Black, W.C, IV (2003) Evolution of arthropod disease vectors. In: C.L. Greenblatt and M. Spigelman (eds) Emerging Pathogens: The Archaeology, Ecology, and Evolution of Infectious Disease. Oxford University Press, pp. 49-63.
^Schelvis, J.; Koot, C. (1995). "Sheep or goat? Damalinia deals with the dilemma". Proceedings of Experimental and Applied Entomology of the Netherlands Entomological Society. 6: 161–162.
^Baker, B.W. (2007). "Parasitism as a potential factor in reduced genetic variability in Late-Quaternary musk ox (Ovibos moschatus)". Current Research in the Pleistocene. 24: 159–162.