Polyglutamine-binding protein 1 (PQBP1) is a protein that in humans is encoded by the PQBP1gene.[5][6][7]
Polyglutamine binding protein-1, which was identified as a binding protein to the polyglutamine tract sequence,[5][7] is an evolutionally conserved protein[8] expressed in various tissues including developmental[9] and adult brains[7] or mesodermal tissues.[10] In cells, PQBP1 is dominantly located in the nucleus[7][11] but also in the cytoplasm dependently on the cell type[12] and stress conditions.[13] PQBP1 has recently been found to play a role in the innate immune response of dendritic cells.[14]
It should be of note that PQBP1 has no relationship with QBP1, an artificial synthetic peptide.
The molecular roles of PQBP1 are mainly in mRNA splicing[16][17] and transcription.[11][18] PQBP1 interacts with splicing proteins[19][20][21][22] and RNA-binding proteins.[23][24] PQBP1 deficiency critically affects mRNA splicing of cell cycle and synapse related genes.[16] Recent results indicated implication of PQBP1 in cytoplasmic RNA metabolism[25] and elongation of protein translation from mRNA.[26] Research also seems to suggest that PQBP1 also plays a role in the innate immune system as a necessary adaptor for the cGAS-mediated innate response to lentiviruses such as HIV1. This PQBP-1 dependent response initiates a sensor that detects lentiviral DNA.[27]
Clinical significance
Mutations in the PQBP1 gene, which encodes for this protein, have been known to cause X-linked intellectual disabilities (XLID), commonly referred to as Renpenning's syndrome.[28] Recent studies indicate that PQBP-1 interaction with TXNL4A is missing in patients with frameshift mutations causing Renpenning's syndrome. PQBP-1 seems to facilitate the nuclear import of TXNL4A, however the biological function of that interaction requires further investigation.[29] People who suffer from these disabilities share a common set of symptoms including: microcephaly, shortened stature and impaired intellectual development.[30] There are 11 types of mutations that have been identified, but the most common being frameshift mutations.[28][31] Other syndromic XLIDs such as Golabi-Ito-Hall syndrome and non-syndromic ID patients were also associated with PQBP1 gene mutations.[32][33][34]
Mutant Ataxin-1 and Huntingtin, disease proteins of spinocerebellar ataxia type-1 and Huntington's disease respectively, interact with PQBP1 and disturbed the functions of PQBP1.[11][35] Moreover, recent investigations revealed pathological roles of PQBP1 in neurons[36] and microglia[12] under neurodegeneration of Alzheimer's disease and tauopathy. SRRM2 phosphorylation detected in neurons at the early stage of Alzheimer's disease pathology[37] leads to reduction of SRRM2, a scaffold protein for RNA metabolism related molecules in the nucleus, which causes reduction of PQBP1 in the nucleus and acquired intellectual disability.[36] PQBP1 was shown as an intracellular receptor for HIV1 in dendritic cells[38] for innate immune system. Recent studies indicate that PQBP1 recognizes intact capsids of HIV-1 particles. It interacts with these capsids through its amino-terminus, and when capsid disassembles it triggers the PQBP-1 dependent recruitment of cGAS. This is crucial to activating the sensor that detects HIV-1 DNA as soon as synthesis is initiated.[27] Similarly, PQBP1 functions as an intracellular receptor for tau proteins and trigger brain inflammation.[12]
Animal models
Mouse models of knockdown and conditional knockout were generated, and they showed cognitive impairment and microcephaly.[39][16] The KD mice possess a transgene expressing 498 bp double-strand RNA that is endogenously cleaved to siRNA suppressing PQBP1 efficiently, and did not show obvious developmental abnormality.[39] Another knockdown model of the gene in mouse embryo primary neurons revealed a decrease in splicing efficiency and resulted in abnormal gastrulation and neuralation patterning.[10]
Drosophila models of underexpression and overexpression were also generated.[40][41] The hypomorph Drosophila model revealed molecular function of PQBP1 in learning acquisition mediated by decreased mRNA and protein expressions of NMDA receptor subunit NR1.[40] Research indicates that in order to appropriately function, the protein must be expressed within a critical range.[42][10]
^"Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^"Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
^ abImafuku I, Waragai M, Takeuchi S, Kanazawa I, Kawabata M, Mouradian MM, Okazawa H (December 1998). "Polar amino acid-rich sequences bind to polyglutamine tracts". Biochemical and Biophysical Research Communications. 253 (1): 16–20. doi:10.1006/bbrc.1998.9725. PMID9875212.
^Okazawa H, Sudol M, Rich T (November 2001). "PQBP-1 (Np/PQ): a polyglutamine tract-binding and nuclear inclusion-forming protein". Brain Research Bulletin. 56 (3–4): 273–280. doi:10.1016/S0361-9230(01)00579-2. PMID11719261. S2CID25290878.
^Qi Y, Hoshino M, Wada Y, Marubuchi S, Yoshimura N, Kanazawa I, et al. (September 2005). "PQBP-1 is expressed predominantly in the central nervous system during development". The European Journal of Neuroscience. 22 (6): 1277–1286. doi:10.1111/j.1460-9568.2005.04339.x. PMID16190883. S2CID33492223.
^Zhang Y, Lindblom T, Chang A, Sudol M, Sluder AE, Golemis EA (October 2000). "Evidence that dim1 associates with proteins involved in pre-mRNA splicing, and delineation of residues essential for dim1 interactions with hnRNP F and Npw38/PQBP-1". Gene. 257 (1): 33–43. doi:10.1016/S0378-1119(00)00372-3. PMID11054566.
^Waragai M, Junn E, Kajikawa M, Takeuchi S, Kanazawa I, Shibata M, et al. (July 2000). "PQBP-1/Npw38, a nuclear protein binding to the polyglutamine tract, interacts with U5-15kD/dim1p via the carboxyl-terminal domain". Biochemical and Biophysical Research Communications. 273 (2): 592–595. doi:10.1006/bbrc.2000.2992. PMID10873650.
^ abStevenson RE, Bennett CW, Abidi F, Kleefstra T, Porteous M, Simensen RJ, et al. (May 2005). "Renpenning syndrome comes into focus". American Journal of Medical Genetics. Part A. 134 (4): 415–421. doi:10.1002/ajmg.a.30664. PMID15782410. S2CID24333408.
^Tamura T, Sone M, Nakamura Y, Shimamura T, Imoto S, Miyano S, Okazawa H (January 2013). "A restricted level of PQBP1 is needed for the best longevity of Drosophila". Neurobiology of Aging. 34 (1): 356.e11–356.e20. doi:10.1016/j.neurobiolaging.2012.07.015. PMID22901698. S2CID17527056.
Further reading
Fox P, Fox D, Gerrard JW (1981). "X-linked mental retardation: Renpenning revisited". American Journal of Medical Genetics. 7 (4): 491–495. doi:10.1002/ajmg.1320070409. PMID7211958.
Deqaqi SC, N'Guessan M, Forner J, Sbiti A, Beldjord C, Chelly J, et al. (1998). "A gene for non-specific X-linked mental retardation (MRX55) is located in Xp11". Annales de Génétique. 41 (1): 11–16. PMID9599645.
Waragai M, Junn E, Kajikawa M, Takeuchi S, Kanazawa I, Shibata M, et al. (July 2000). "PQBP-1/Npw38, a nuclear protein binding to the polyglutamine tract, interacts with U5-15kD/dim1p via the carboxyl-terminal domain". Biochemical and Biophysical Research Communications. 273 (2): 592–595. doi:10.1006/bbrc.2000.2992. PMID10873650.
Zhang Y, Lindblom T, Chang A, Sudol M, Sluder AE, Golemis EA (October 2000). "Evidence that dim1 associates with proteins involved in pre-mRNA splicing, and delineation of residues essential for dim1 interactions with hnRNP F and Npw38/PQBP-1". Gene. 257 (1): 33–43. doi:10.1016/S0378-1119(00)00372-3. PMID11054566.
Iwamoto K, Huang Y, Ueda S (December 2000). "Genomic organization and alternative transcripts of the human PQBP-1 gene". Gene. 259 (1–2): 69–73. doi:10.1016/S0378-1119(00)00437-6. PMID11163963.
Stevenson RE, Bennett CW, Abidi F, Kleefstra T, Porteous M, Simensen RJ, et al. (May 2005). "Renpenning syndrome comes into focus". American Journal of Medical Genetics. Part A. 134 (4): 415–421. doi:10.1002/ajmg.a.30664. PMID15782410. S2CID24333408.
Marubuchi S, Wada Y, Okuda T, Hara Y, Qi ML, Hoshino M, et al. (November 2005). "Polyglutamine tract-binding protein-1 dysfunction induces cell death of neurons through mitochondrial stress". Journal of Neurochemistry. 95 (3): 858–870. doi:10.1111/j.1471-4159.2005.03405.x. PMID16104847. S2CID30033589.