PLCE1 is located on the q arm of chromosome 10 in position 23.33 and has 39 exons.[7] PLCE1, the protein encoded by this gene, is located on the Golgi apparatus, the cell membrane, and in the cytosol. It contains 3 turns, 15 beta strands, and 6 alpha helixes. PLCE1 contains a 260 amino acid Ras-GEF domain at p. 531-790, a 149 amino acid PI-PLC X-box domain at p. 1392-1540, a 117 amino acid PI-PLC Y-box domain at p. 1730 – 1846, a 101 amino acid C2 domain at p. 1856 – 1956, a 103 amino acid Ras-associating 1 domain at p. 2012 – 2114, and a 104 amino acid Ras-associating 2 domain at p. 2135 – 2238. There is a region of 79 amino acids from p. 1686 – 1764 that is required for PLCE1 to be activated by RHOA, RHOB, GNA12, GNA13 and G-beta gamma. PLCE1 also has a Ca2+ cofactor.[6][9][10] Alternative splicing results in multiple transcript variants encoding distinct isoforms.[7]
Mutations in this gene cause early-onset nephrotic syndrome. This disease is characterized by proteinuria, edema, and diffuse mesangial sclerosis or focal and segmental glomerulosclerosis.[7] Signs and symptoms include kidneybiopsies demonstrating non-specific histologic changes such as focal segmental glomerulosclerosis and diffuse mesangial proliferation as well as genetic tests revealing a pathogenic S1484L mutation. Diffuse mesangial proliferation is characterized by mesangial matrix expansion with no mesangial hypercellularity, hypertrophy of the podocytes, vacuolized podocytes, thickened basement membranes, and diminished patency of the capillary lumen.[11][9][10] This disease has also been associated with mitochondrial cytopathy stemming from respiratory chain deficiency primarily affecting complex IV.[8]
PLCE1 gene polymorphism increases susceptibility to oesophageal, gastric, colon, and squamous cell carcinoma of the head and neck area. It is shown that PLCE1 is highly expressed in osteosarcoma and regulates its proliferation and invasion. PLCE1 also affects the survival of patients with osteosarcoma. Therefore, it is suggested as a potential diagnostic biomarker and molecular therapeutic target for osteosarcoma.[13]
Zauli G, Previati M, Caramelli E, Bassini A, Falcieri E, Gibellini D, Bertolaso L, Bosco D, Robuffo I, Capitani S (September 1995). "Exogenous human immunodeficiency virus type-1 Tat protein selectively stimulates a phosphatidylinositol-specific phospholipase C nuclear pathway in the Jurkat T cell line". European Journal of Immunology. 25 (9): 2695–700. doi:10.1002/eji.1830250944. PMID7589147. S2CID20562627.
Mayne M, Bratanich AC, Chen P, Rana F, Nath A, Power C (1998). "HIV-1 tat molecular diversity and induction of TNF-alpha: implications for HIV-induced neurological disease". Neuroimmunomodulation. 5 (3–4): 184–92. doi:10.1159/000026336. PMID9730685. S2CID19529677.
Schmidt M, Evellin S, Weernink PA, von Dorp F, Rehmann H, Lomasney JW, Jakobs KH (November 2001). "A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase". Nature Cell Biology. 3 (11): 1020–4. doi:10.1038/ncb1101-1020. PMID11715024. S2CID6423723.
Lennartsson J, Wernstedt C, Engström U, Hellman U, Rönnstrand L (August 2003). "Identification of Tyr900 in the kinase domain of c-Kit as a Src-dependent phosphorylation site mediating interaction with c-Crk". Experimental Cell Research. 288 (1): 110–8. doi:10.1016/S0014-4827(03)00206-4. PMID12878163.
vom Dorp F, Sari AY, Sanders H, Keiper M, Oude Weernink PA, Jakobs KH, Schmidt M (August 2004). "Inhibition of phospholipase C-epsilon by Gi-coupled receptors". Cellular Signalling. 16 (8): 921–8. doi:10.1016/j.cellsig.2004.01.009. PMID15157671.