Early Jurassic geological formation in northern Colombia
The Noreán Formation (Spanish : Formación Noreán , J1-2n ,[ 2] [ 3] J1n )[ 4] is a geological formation of the Eastern Ranges of the Colombian Andes , the Serranía de San Lucas and as basement underlying the southernmost Lower and northern Middle Magdalena Valleys . The formation consists of volcanic and pyroclastic lavas that range from andesites to rhyolites . Vitric, lithic and crystal tuffs and andesitic dikes and hypabyssal bodies are also present in the formation.
The more than 2,000 metres (6,600 ft) thick formation was deposited in a continental arc magmatic setting in an Early Jurassic graben that presently forms the basement of the Middle Magdalena Valley (VMM). A positive anomaly of Pb suggests a subduction -related genesis dominated by explosive volcanism.
Etymology
The Noreán Formation was first defined as the "Unidad Volcanoclástica de Noreán " ("Volcanoclastic Unit of Noreán") in 1995 and in the same year elevated to a formal formation by Clavijo in 1995 as part of the geologic mapping for Plancha 65 Tamalameque and named after the caserío Noreán, 1 kilometre (0.62 mi) north of Aguachica , Cesar .[ 5] The type locality of the Noreán Formation is along the road between Buturama and Bombeadero in Aguachica.[ 6]
Description
The Noreán Formation is found in the northern part of the Eastern Ranges of the Colombian Andes , stretching from the Cesar Department in the north, towards the Serranía de San Lucas in Bolívar to the Santander Massif in Santander in the south. The formation forms the economic basement in the southern Lower Magdalena Valley (VIM) and the northern Middle Magdalena Valley (VMM). The formation is interpreted as characteristic of an important explosive volcanic phase, the materials of which were deposited in a graben setting of the Middle Magdalena Valley . The Early Jurassic basin was covered by a shallow sea and in part drained by rivers and lakes. The basin at time of deposition was bordered by a volcanic arc , characterized by basaltic to calc-alkaline magmas .[ 7] The formation also comprises less than 1 metre (3.3 ft) thin very fine to fine sandstone beds constituting quartz (90 to 60%), feldspars (10 to 40%) and lithic fragments (1-2 %).[ 8]
The volcanic and pyroclastic rocks of the Noreán Formation are composed of lavas that range from andesitic to rhyolitic , together with vitric, lithic and crystal tuffs . Mainly andesitic dikes and hypabyssal bodies are also present. Geochemically, the volcanic and pyroclastic rocks exhibit chemical similarities, belong to the calc-alkaline series and have negative anomalies of Nb , P and Ti and a positive anomaly of Pb , suggesting a subduction -related genesis.[ 9]
U-Pb zircon geochronology resulted in ages of 192.4 ± 2.2 Ma in a basaltic andesite , 184.9 ± 2.0 Ma in an andesitic lava and 175.9 ± 1.1 Ma in a rhyolitic lava, indicating the occurrence of volcanic events in this section of the Noreán Formation from the Lower to the earliest Middle Jurassic. Zircon inheritance suggests that the volcanic arc was emplaced in a Meso- to Neoproterozoic basement . The Noreán Formation represents continental arc magmatism,[ 9] which occurred during a phase of extensional tectonics along the continental margin of northwestern South America from approximately 195 to 168 Ma.[ 10]
Stratigraphy
To the northwest of the Santander Massif, the formation overlies the Bocas Formation and is unconformably overlain by the Tablazo Formation .[ 6] In some locations in this area, the formation is found in faulted contact with the Bucaramanga Gneiss , La Virgen Formation and the Tablazo and La Luna Formations . In the Serranía de San Lucas, the Noreán Formation conformably overlies the Morrocoyal Formation and in this area is overlain by the Tablazo Formation and the Arenal Conglomeratic Unit. Across the San Lucas mountains, the formation is in faulted and discordant contact with the Norosí Batholith , the San Lucas Gneiss and the Sudán Formation .[ 7]
The formation is offset by the megaregional Bucaramanga-Santa Marta Fault .[ 3] [ 1]
Subdivision
On the western flanks of the Eastern Cordillera, the formation is subdivided into six units and in the Serranía de San Lucas into four (1, 3, 5 and 6 of the six named below), from young to old:
Hypobyssal Andesitic Unit (Jnha) - 12 metres (39 ft)[ 11]
Effusive Rhyolitic Unit (Jner) - 150 metres (490 ft)[ 12]
Dacitic Effusive Unit (Jned) - 350 metres (1,150 ft)[ 13]
Pyroclastic and Effusive Dacitic Unit (Jnpd) - 450 metres (1,480 ft)[ 14]
Effusive Spherulitic Unit (Jnee) - 300 metres (980 ft)[ 15]
Pyroclastic-epiclastic Unit (Jnpe) - 800 metres (2,600 ft)[ 16]
Age
Geologic map of the northern VMM and Santander Massif with the Noreán Formation in light purple. U-Pb dating sites with associated ages are indicated.
The age of the Noreán Formation has been established using potassium-argon (K-Ar), rubidium-strontium (Rb-Sr), and uranium-lead dating (U-Pb). The first method gave an age range of 194 ± 6 Ma, the Rb-Sr dating method provided a range of 161 ± 27 Ma and U-Pb dating of zircons resulted in ages of 201.6 ± 3.6 and 196.1 ± 4.4.[ 7] Refined dating of the formation performed in 2019 by Correa Martínez et al. concluded an age range between 192.4 ± 2.2 and 175.9 ± 1.1 Ma, spanning most of the Early Jurassic , from Sinemurian to Toarcian .[ 17] The Noreán Formation was intruded by the San Lucas Granitoid in the Middle Jurassic , dated at 166.9 ± 6 Ma.[ 18] A 2020 thermochronological study concluded that the Jurassic volcanic rocks covering the Santander Massif were exhumed during the latest Cretaceous to early Paleocene .[ 19]
Outcrops
The northernmost outcrop of the Noreán Formation is found in Chimichagua , Cesar.[ 2] In Cesar, outcrops occur south of the village of Saloa and around the town of Pailitas ,[ 3] east of Tamalameque and Pelaya and west of La Gloria ,[ 1] in the western part of Morales, Bolívar , north and east of Aguachica where its type locality is situated,[ 20] in the Serranía de San Lucas, where the urban center of Santa Rosa del Sur rests on top of the formation,[ 21] in the west of San Pablo, Bolívar ,[ 22] and in the western part of Cantagallo, Bolívar .[ 23]
Regional correlations
In the Santander Massif, the Noreán Formation has been correlated to the Jordán Formation , while in the Serranía de San Lucas the formation correlates with and is partly overlying the Morrocoyal Formation. In the Sierra Nevada de Santa Marta of northern Colombia, the Noreán Formation is considered equivalent with the Guatapurí Formation , the Corual and Los Indios Formations and the ignimbrite complexes of Caja de Ahorros, La Paila and La Piña. In the Serranía del Perijá to the east of the extent of the formation, the Noreán Formation correlates with La Quinta Formation . In the La Guajira peninsula, the formation is time-equivalent with the Rancho Grande Formation while to the south of its area in the Upper Magdalena Valley the Noreán Formation is correlated with the Saldaña Formation .[ 7] The Lower Jurassic is missing in the Llanos Basin to the southeast of the extent of the Eastern Cordillera.[ 24]
Stratigraphy of the Llanos Basin and surrounding provinces
Ma
Age
Paleomap
Regional events
Catatumbo
Cordillera
proximal Llanos
distal Llanos
Putumayo
VSM
Environments
Maximum thickness
Petroleum geology
Notes
0.01
Holocene
Holocene volcanismSeismic activity
alluvium
Overburden
1
Pleistocene
Pleistocene volcanismAndean orogeny 3Glaciations
Guayabo
Soatá Sabana
Necesidad
Guayabo
Gigante
Alluvial to fluvial (Guayabo)
550 m (1,800 ft) (Guayabo)
[ 25] [ 26] [ 27] [ 28]
2.6
Pliocene
Pliocene volcanism Andean orogeny 3GABI
Subachoque
5.3
Messinian
Andean orogeny 3Foreland
Marichuela
Caimán
Honda
[ 27] [ 29]
13.5
Langhian
Regional flooding
León
hiatus
Caja
León
Lacustrine (León)
400 m (1,300 ft) (León)
Seal
[ 28] [ 30]
16.2
Burdigalian
Miocene inundationsAndean orogeny 2
C1
Carbonera C1
Ospina
Proximal fluvio-deltaic (C1)
850 m (2,790 ft) (Carbonera)
Reservoir
[ 29] [ 28]
17.3
C2
Carbonera C2
Distal lacustrine-deltaic (C2)
Seal
19
C3
Carbonera C3
Proximal fluvio-deltaic (C3)
Reservoir
21
Early Miocene
Pebas wetlands
C4
Carbonera C4
Barzalosa
Distal fluvio-deltaic (C4)
Seal
23
Late Oligocene
Andean orogeny 1Foredeep
C5
Carbonera C5
Orito
Proximal fluvio-deltaic (C5)
Reservoir
[ 26] [ 29]
25
C6
Carbonera C6
Distal fluvio-lacustrine (C6)
Seal
28
Early Oligocene
C7
C7
Pepino
Gualanday
Proximal deltaic-marine (C7)
Reservoir
[ 26] [ 29] [ 31]
32
Oligo-Eocene
C8
Usme
C8
onlap
Marine-deltaic (C8)
Seal Source
[ 31]
35
Late Eocene
Mirador
Mirador
Coastal (Mirador)
240 m (790 ft) (Mirador)
Reservoir
[ 28] [ 32]
40
Middle Eocene
Regadera
hiatus
45
50
Early Eocene
Socha
Los Cuervos
Deltaic (Los Cuervos)
260 m (850 ft) (Los Cuervos)
Seal Source
[ 28] [ 32]
55
Late Paleocene
PETM 2000 ppm CO2
Los Cuervos
Bogotá
Gualanday
60
Early Paleocene
SALMA
Barco
Guaduas
Barco
Rumiyaco
Fluvial (Barco)
225 m (738 ft) (Barco)
Reservoir
[ 25] [ 26] [ 29] [ 28] [ 33]
65
Maastrichtian
KT extinction
Catatumbo
Guadalupe
Monserrate
Deltaic-fluvial (Guadalupe)
750 m (2,460 ft) (Guadalupe)
Reservoir
[ 25] [ 28]
72
Campanian
End of rifting
Colón-Mito Juan
[ 28] [ 34]
83
Santonian
Villeta /Güagüaquí
86
Coniacian
89
Turonian
Cenomanian-Turonian anoxic event
La Luna
Chipaque
Gachetá
hiatus
Restricted marine (all)
500 m (1,600 ft) (Gachetá)
Source
[ 25] [ 28] [ 35]
93
Cenomanian
Rift 2
100
Albian
Une
Une
Caballos
Deltaic (Une)
500 m (1,600 ft) (Une)
Reservoir
[ 29] [ 35]
113
Aptian
Capacho
Fómeque
Motema
Yaví
Open marine (Fómeque)
800 m (2,600 ft) (Fómeque)
Source (Fóm)
[ 26] [ 28] [ 36]
125
Barremian
High biodiversity
Aguardiente
Paja
Shallow to open marine (Paja)
940 m (3,080 ft) (Paja)
Reservoir
[ 25]
129
Hauterivian
Rift 1
Tibú- Mercedes
Las Juntas
hiatus
Deltaic (Las Juntas)
910 m (2,990 ft) (Las Juntas)
Reservoir (LJun)
[ 25]
133
Valanginian
Río Negro
Cáqueza Macanal Rosablanca
Restricted marine (Macanal)
2,935 m (9,629 ft) (Macanal)
Source (Mac)
[ 26] [ 37]
140
Berriasian
Girón
145
Tithonian
Break-up of Pangea
Jordán
Arcabuco
Buenavista
Saldaña
Alluvial , fluvial (Buenavista)
110 m (360 ft) (Buenavista)
"Jurassic"
[ 29] [ 38]
150
Early-Mid Jurassic
Passive margin 2
La Quinta
Noreán
hiatus
Coastal tuff (La Quinta)
100 m (330 ft) (La Quinta)
[ 39]
201
Late Triassic
Mucuchachi
Payandé
[ 29]
235
Early Triassic
Pangea
hiatus
"Paleozoic"
250
Permian
300
Late Carboniferous
Famatinian orogeny
Cerro Neiva ()
[ 40]
340
Early Carboniferous
Fossil fish Romer's gap
Cuche (355-385)
Farallones ()
Deltaic , estuarine (Cuche)
900 m (3,000 ft) (Cuche)
360
Late Devonian
Passive margin 1
Río Cachirí (360-419)
Ambicá ()
Alluvial -fluvial -reef (Farallones)
2,400 m (7,900 ft) (Farallones)
[ 37] [ 41] [ 42] [ 43] [ 44]
390
Early Devonian
High biodiversity
Floresta (387-400)
Shallow marine (Floresta)
600 m (2,000 ft) (Floresta)
410
Late Silurian
Silurian mystery
425
Early Silurian
hiatus
440
Late Ordovician
Rich fauna in Bolivia
San Pedro (450-490)
Duda ()
470
Early Ordovician
First fossils
Busbanzá (>470±22 )
Guape ()
Río Nevado ()
[ 45] [ 46] [ 47]
488
Late Cambrian
Regional intrusions
Chicamocha (490-515)
Quetame ()
Ariarí ()
SJ del Guaviare (490-590)
San Isidro ()
[ 48] [ 49]
515
Early Cambrian
Cambrian explosion
[ 47] [ 50]
542
Ediacaran
Break-up of Rodinia
pre-Quetame
post-Parguaza
El Barro ()
Yellow: allochthonous basement (Chibcha Terrane ) Green: autochthonous basement (Río Negro-Juruena Province )
Basement
[ 51] [ 52]
600
Neoproterozoic
Cariri Velhos orogeny
Bucaramanga (600-1400)
pre-Guaviare
[ 48]
800
Snowball Earth
[ 53]
1000
Mesoproterozoic
Sunsás orogeny
Ariarí (1000)
La Urraca (1030-1100)
[ 54] [ 55] [ 56] [ 57]
1300
Rondônia-Juruá orogeny
pre-Ariarí
Parguaza (1300-1400)
Garzón (1180-1550)
[ 58]
1400
pre-Bucaramanga
[ 59]
1600
Paleoproterozoic
Maimachi (1500-1700)
pre-Garzón
[ 60]
1800
Tapajós orogeny
Mitú (1800)
[ 58] [ 60]
1950
Transamazonic orogeny
pre-Mitú
[ 58]
2200
Columbia
2530
Archean
Carajas-Imataca orogeny
[ 58]
3100
Kenorland
Sources
Legend
group
important formation
fossiliferous formation
minor formation
(age in Ma)
proximal Llanos (Medina)[ note 1]
distal Llanos (Saltarin 1A well)[ note 2]
See also
Notes
^ based on Duarte et al. (2019)[ 61] , García González et al. (2009),[ 62] and geological report of Villavicencio[ 63]
^ based on Duarte et al. (2019)[ 61] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[ 64]
References
^ a b c Plancha 65, 1994
^ a b Plancha 47, 2001
^ a b c Plancha 55, 2006
^ González Iregui et al., 2015, p.56
^ Royero, 1996, p.10
^ a b Correa Martínez et al., 2019, p.31
^ a b c d Correa Martínez et al., 2019, p.32
^ González Iregui et al., 2015, p.58
^ a b Correa Martínez et al., 2019, p.29
^ Rodríguez García et al., 2020, p.43
^ Royero, 1996, p.16
^ Royero, 1996, pp.15-16
^ Royero, 1996, p.15
^ Royero, 1996, pp.13-15
^ Royero, 1996, p.12
^ Royero, 1996, pp.11-12
^ Correa Martínez et al., 2019, p.43
^ Clavijo et al., 2008, p.52
^ Amaya Ferreira et al., 2020, p.11
^ Plancha 75, 1992
^ Plancha 85, 2006
^ Plancha 96, 2006
^ Plancha 108, 2012
^ Barrero et al., 2007, p.70
^ a b c d e f García González et al., 2009, p.27
^ a b c d e f García González et al., 2009, p.50
^ a b García González et al., 2009, p.85
^ a b c d e f g h i j Barrero et al., 2007, p.60
^ a b c d e f g h Barrero et al., 2007, p.58
^ Plancha 111, 2001, p.29
^ a b Plancha 177, 2015, p.39
^ a b Plancha 111, 2001, p.26
^ Plancha 111, 2001, p.24
^ Plancha 111, 2001, p.23
^ a b Pulido & Gómez, 2001, p.32
^ Pulido & Gómez, 2001, p.30
^ a b Pulido & Gómez, 2001, pp.21-26
^ Pulido & Gómez, 2001, p.28
^ Correa Martínez et al., 2019, p.49
^ Plancha 303, 2002, p.27
^ Terraza et al., 2008, p.22
^ Plancha 229, 2015, pp.46-55
^ Plancha 303, 2002, p.26
^ Moreno Sánchez et al., 2009, p.53
^ Mantilla Figueroa et al., 2015, p.43
^ Manosalva Sánchez et al., 2017, p.84
^ a b Plancha 303, 2002, p.24
^ a b Mantilla Figueroa et al., 2015, p.42
^ Arango Mejía et al., 2012, p.25
^ Plancha 350, 2011, p.49
^ Pulido & Gómez, 2001, pp.17-21
^ Plancha 111, 2001, p.13
^ Plancha 303, 2002, p.23
^ Plancha 348, 2015, p.38
^ Planchas 367-414, 2003, p.35
^ Toro Toro et al., 2014, p.22
^ Plancha 303, 2002, p.21
^ a b c d Bonilla et al., 2016, p.19
^ Gómez Tapias et al., 2015, p.209
^ a b Bonilla et al., 2016, p.22
^ a b Duarte et al., 2019
^ García González et al., 2009
^ Pulido & Gómez, 2001
^ García González et al., 2009, p.60
Bibliography
Amaya Ferreira, Sergio; Zuluaga, Carlos Augusto; Bernet, Matthias (2020), "Different Levels of Exhumation across the Bucaramanga Fault in the Cepitá Area of the Southwestern Santander Massif, Colombia: Implications for the Tectonic Evolution of the Northern Andes in Northwestern South America" (PDF) , Servicio Geológico Colombiano Publicaciones Especiales , 37 : 1– 17, retrieved 2020-07-13
Rodríguez García, Gabriel; Correa Martínez, Ana María; Zapata García, Gilberto; Arango Mejía, María Isabel; Obando Erazo, Gloria; Zapata Villada, Juan Pablo; Bermúdez, José Gilberto (2020), "Diverse Jurassic Magmatic Arcs of the Colombian Andes: Constraints from Petrography, Geochronology, and Geochemistry" (PDF) , Servicio Geológico Colombiano Publicaciones Especiales , 36 : 1– 54, retrieved 2020-07-13
Correa Martínez, Ana María; Rodríguez, Gabriel; Arango, María Isabel; Zapata García, Gilberto (2019), "Petrografía, geoquímica y geocronología U-Pb de las rocas volcánicas y piroclásticas de la Formación Noreán al NW del Macizo de Santander, Colombia" , Boletín de Geología , 41 : 29– 54, retrieved 2019-10-31 Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License .
González Iregui, Humberto; Salinas Echeverri, Rosalba; Cárdenas, Jorge Ignacio; Muñoz Taborda, Carlos; Ayala Montoya, Germán; Vélez Giraldo, Wilson (2015), Memoria de la Plancha 56 - San Roque - 1:100,000 , Servicio Geológico Colombiano , pp. 1– 147
Clavijo, Jairo; Mantilla, Luís; Pinto, Jorge; Bernal, Luís; Pérez, Adrián (2008), "Evolución geológica de la Serranía de San Lucas, norte del Valle Medio del Magdalena y noroeste de la Cordillera Oriental" , Boletín de Geología , 30 : 45– 62, retrieved 2020-07-13
Barrero, Dario; Pardo, Andrés; Vargas, Carlos A.; Martínez, Juan F. (2007), Colombian Sedimentary Basins: Nomenclature, Boundaries and Petroleum Geology, a New Proposal , ANH , pp. 1– 92
Royero, José María (1996), Memoria de la Plancha 65 - Tamalameque - 1:100,000 , INGEOMINAS , pp. 1– 78
Maps
Hernández, Marina; Clavijo, Jairo; González, Javier (2001), Plancha 47 - Chiriguaná - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Bernal Vargas, Luis Enrique; Mantilla Figueroa, Luis Carlos (2006), Plancha 55 - El Banco - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Royero, José María; Clavijo, Jairo; Mendoza, Hernando; Barbosa, Gonzalo; Vargas, G.; Bernal, R.E.; Ferreira, P. (1994), Plancha 65 - Tamalameque - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Clavijo, Jairo; Barbosa, Gonzalo; Camacho, J.A.; Bernal, L.E.; Royero, José María; Castro, E. (1992), Plancha 75 - Aguachica - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Bernal Vargas, Luis Enrique; Mantilla Figueroa, Luis Carlos (2006), Plancha 85 - Simití - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
Bernal Vargas, Luis Enrique; Mantilla Figueroa, Luis Carlos (2006), Plancha 96 - Bocas del Rosario - 1:100,000 , INGEOMINAS , p. 1, retrieved 2017-06-06
UPTC (2012), Plancha 108 - Puerto Wilches - 1:100,000 (PDF) , Servicio Geológico Colombiano , p. 1, retrieved 2018-06-01