The neonatal fragment crystallizable (Fc) receptor (also FcRn, IgG receptor FcRn large subunit p51, or Brambell receptor) is a protein that in humans is encoded by the FCGRTgene.[1][2][3] It is an IgG Fc receptor which is similar in structure to the MHC class I molecule and also associates with beta-2-microglobulin.[4][5] In rodents, FcRn was originally identified as the receptor that transports maternal immunoglobulin G (IgG) from mother to neonatal offspring via mother's milk, leading to its name as the neonatal Fc receptor.[6][7] In humans, FcRn is present in the placenta where it transports mother's IgG to the growing fetus.[1][8] FcRn has also been shown to play a role in regulating IgG and serum albumin turnover.[9][10][11][12][13] Neonatal Fc receptor expression is up-regulated by the proinflammatory cytokine, TNF, and down-regulated by IFN-γ.[14]
Interactions of FcRn with IgG and serum albumin
In addition to binding to IgG, FCGRT has been shown to interact with human serum albumin.[10][15] FcRn-mediated transcytosis of IgG across epithelial cells is possible because FcRn binds IgG at acidic pH (<6.5) but not at neutral or higher pH.[6][7][16] The binding site for FcRn on IgG has been mapped using functional and structural studies, and involves in the interaction of relatively well conserved histidine residues on IgG with acidic residues on FcRn.[17][18]
FcRn-mediated recycling and transcytosis of IgG and serum albumin
FcRn extends the half-life of IgG and serum albumin by reducing lysosomal degradation of these proteins in endothelial cells[19] and bone-marrow derived cells.[20][21][22] The clearance rate of IgG and albumin is abnormally short in mice that lack functional FcRn.[9][10] IgG, serum albumin and other serum proteins are continuously internalized into cells through pinocytosis. Generally, internalized serum proteins are transported from early endosomes to lysosomes, where they are degraded. Following entry into cells, the two most abundant serum proteins, IgG and serum albumin, are bound by FcRn at the slightly acidic pH (<6.5) within early (sorting) endosomes, sorted and recycled to the cell surface where they are released at the neutral pH (>7.0) of the extracellular environment.[23][24][25] In this way, IgG and serum albumin are salvaged to avoid lysosomal degradation.[23][24][26] This cellular mechanism provides an explanation for the prolonged in vivo half-lives of IgG and serum albumin[12][13][23] and transport of these ligands across cellular barriers.[8][16][27] In addition, for cell types bathed in an acidic environment such as the slightly acidic intestinal lumen, cell surface FcRn can bind to IgG, transport bound ligand across intestinal epithelial cells followed by release at the near neutral pH at the basolateral surface.[6][7][16]
Diverse roles for FcRn in various organs
FcRn is expressed on antigen-presenting leukocytes such as dendritic cells and is also expressed in neutrophils to help clear opsonized bacteria.[14] In the kidneys, FcRn is expressed on epithelial cells called podocytes to prevent IgG and albumin from clogging the glomerular filtration barrier.[28][29] Current studies are investigating FcRn in the liver because there are relatively low concentrations of both IgG and albumin in liver bile despite high concentrations in the blood.[30][31] Studies have also shown that FcRn-mediated transcytosis is involved with the trafficking of the HIV-1 virus across genital tract epithelium.[32]
Half-life extension of therapeutic proteins
The identification of FcRn as a central regulator of IgG levels[9] led to the engineering of IgG-FcRn interactions to increase in vivo persistence of IgG.[11][33] For example, the half-life extended complement C5-specific antibody, Ultomiris (ravulizumab), has been approved for the treatment of autoimmunity[34] and a half-life extended antibody cocktail (Evusheld) with 'YTE' mutations[35] is used for the prophylaxis of SARS-CoV2.[36] Engineering of albumin-FcRn interactions has also generated albumin variants with increased in vivo half-lives.[37] It has also been shown that conjugation of some drugs to the Fc region of IgG or serum albumin to generate fusion proteins significantly increases their half-life.[38][39][40]
There are several drugs on the market that have Fc portions fused to the effector proteins in order to increase their half-lives through FcRn-mediated recycling. They include: Amevive (alefacept), Arcalyst (rilonacept), Enbrel (etanercept), Nplate (romiplostim), Orencia (abatacept) and Nulojix (belatacept).[40] Enbrel (etanercept) was the first successful IgG Fc-linked soluble receptor therapeutic and works by binding and neutralizing the pro-inflammatory cytokine, TNF-α.[40][41]
Targeting FcRn to treat autoimmune disease
Multiple autoimmune disorders are caused by the binding of IgG to self antigens. Since FcRn extends IgG half-life in the circulation, it can also confer long half-lives on these pathogenic antibodies and promote autoimmune disease.[42][43][44] Therapies seek to disrupt the IgG-FcRn interaction to increase the clearance of disease-causing IgG autoantibodies from the body.[33] One such therapy is the infusion of intravenous immunoglobulin (IVIg) to saturate FcRn's IgG recycling capacity and proportionately reduce the levels of disease-causing IgG autoantibody binding to FcRn, thereby increasing disease-causing IgG autoantibody removal.[43][45][46] More recent approaches involve the strategy of blocking the binding of IgG to FcRn by delivering antibodies that bind with high affinity to this receptor through their Fc region[47][44][48] or variable regions.[49][50][51] These engineered Fc fragments or antibodies are being used in clinical trials as treatments for antibody-mediated autoimmune diseases such as primary immune thrombocytopenia and skin blistering diseases (pemphigus),[52][53][54][55] and the Fc-based inhibitor, efgartigimod, based on the 'Abdeg' technology[47] was recently approved (as 'Vyvgart') for the treatment of generalized myasthenia gravis in December 2021.[56]
^Kandil E, Egashira M, Miyoshi O, Niikawa N, Ishibashi T, Kasahara M, Miyosi O (July 1996). "The human gene encoding the heavy chain of the major histocompatibility complex class I-like Fc receptor (FCGRT) maps to 19q13.3". Cytogenetics and Cell Genetics. 73 (1–2): 97–98. doi:10.1159/000134316. PMID8646894.
^Simister NE, Mostov KE (1989). "Cloning and expression of the neonatal rat intestinal Fc receptor, a major histocompatibility complex class I antigen homolog". Cold Spring Harbor Symposia on Quantitative Biology. 54 (Pt 1): 571–580. doi:10.1101/sqb.1989.054.01.068. PMID2534798.
^ abcSimister NE, Rees AR (July 1985). "Isolation and characterization of an Fc receptor from neonatal rat small intestine". European Journal of Immunology. 15 (7): 733–738. doi:10.1002/eji.1830150718. PMID2988974. S2CID42396197.
^ abGhetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, et al. (July 1997). "Increasing the serum persistence of an IgG fragment by random mutagenesis". Nature Biotechnology. 15 (7): 637–640. doi:10.1038/nbt0797-637. PMID9219265. S2CID39836528.
^ abRoopenian DC, Akilesh S (September 2007). "FcRn: the neonatal Fc receptor comes of age". Nature Reviews. Immunology. 7 (9): 715–725. doi:10.1038/nri2155. PMID17703228. S2CID6980400.
^Andersen JT, Dee Qian J, Sandlie I (November 2006). "The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin". European Journal of Immunology. 36 (11): 3044–3051. doi:10.1002/eji.200636556. PMID17048273. S2CID22024929.
^Kim JK, Tsen MF, Ghetie V, Ward ES (October 1994). "Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor". European Journal of Immunology. 24 (10): 2429–2434. doi:10.1002/eji.1830241025. PMID7925571. S2CID43499403.
^Larsen MT, Rawsthorne H, Schelde KK, Dagnæs-Hansen F, Cameron J, Howard KA (October 2018). "Cellular recycling-driven in vivo half-life extension using recombinant albumin fusions tuned for neonatal Fc receptor (FcRn) engagement". Journal of Controlled Release. 287: 132–141. doi:10.1016/j.jconrel.2018.07.023. PMID30016735. S2CID51677989.
^Bern M, Sand KM, Nilsen J, Sandlie I, Andersen JT (August 2015). "The role of albumin receptors in regulation of albumin homeostasis: Implications for drug delivery". Journal of Controlled Release. 211: 144–162. doi:10.1016/j.jconrel.2015.06.006. PMID26055641. S2CID205878058.
^ abHansen RJ, Balthasar JP (June 2003). "Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia". Journal of Pharmaceutical Sciences. 92 (6): 1206–1215. doi:10.1002/jps.10364. PMID12761810.
^ abVaccaro C, Zhou J, Ober RJ, Ward ES (October 2005). "Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels". Nature Biotechnology. 23 (10): 1283–1288. doi:10.1038/nbt1143. PMID16186811. S2CID13526188.
Dürrbaum-Landmann I, Kaltenhäuser E, Flad HD, Ernst M (April 1994). "HIV-1 envelope protein gp120 affects phenotype and function of monocytes in vitro". Journal of Leukocyte Biology. 55 (4): 545–551. doi:10.1002/jlb.55.4.545. PMID8145026. S2CID44412688.
Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL (October 1996). "Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport". Journal of Immunology. 157 (8): 3317–3322. doi:10.4049/jimmunol.157.8.3317. PMID8871627. S2CID10701519.
West AP, Bjorkman PJ (August 2000). "Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,)". Biochemistry. 39 (32): 9698–9708. doi:10.1021/bi000749m. PMID10933786.
Mikulska JE, Pablo L, Canel J, Simister NE (August 2000). "Cloning and analysis of the gene encoding the human neonatal Fc receptor". European Journal of Immunogenetics. 27 (4): 231–240. doi:10.1046/j.1365-2370.2000.00225.x. PMID10998088.
Praetor A, Jones RM, Wong WL, Hunziker W (August 2002). "Membrane-anchored human FcRn can oligomerize in the absence of IgG". Journal of Molecular Biology. 321 (2): 277–284. doi:10.1016/S0022-2836(02)00626-5. PMID12144784.
Zhou J, Johnson JE, Ghetie V, Ober RJ, Ward ES (September 2003). "Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G". Journal of Molecular Biology. 332 (4): 901–913. doi:10.1016/S0022-2836(03)00952-5. PMID12972260.
Cianga P, Cianga C, Cozma L, Ward ES, Carasevici E (December 2003). "The MHC class I related Fc receptor, FcRn, is expressed in the epithelial cells of the human mammary gland". Human Immunology. 64 (12): 1152–1159. doi:10.1016/j.humimm.2003.08.025. PMID14630397.