where is an matrix, is a matrix, is an -dimensional vector with components in , is an -dimensional vector with components in , is an -dimensional vector with components in , is an -dimensional vector with components in
Solution concepts
A feasible point is called efficient if there is no feasible point with , , where denotes the component-wise ordering.
Often in the literature, the aim in multiple objective linear programming is to compute the set of all efficient extremal points.....[1] There are also algorithms to determine the set of all maximal efficient faces.[2] Based on these goals, the set of all efficient (extreme) points can be seen to be the solution of MOLP. This type of solution concept is called decision set based.[3] It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).
Efficient points are frequently called efficient solutions. This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP.[4]
More recent references consider outcome set based solution concepts[5] and corresponding algorithms.[6][3] Assume MOLP is bounded, i.e. there is some such that for all feasible . A solution of MOLP is defined to be a finite subset of efficient points that carries a sufficient amount of information in order to describe the upper image of MOLP. Denoting by the feasible set of MOLP, the upper image of MOLP is the set . A formal definition of a solution [5][7] is as follows:
A finite set of efficient points is called solution to MOLP if
("conv" denotes the convex hull).
If MOLP is not bounded, a solution consists not only of points but of points and directions [7][8]
Solution methods
Multiobjective variants of the simplex algorithm are used to compute decision set based solutions[1][2][9] and objective set based solutions.[10]
Multiobjective linear programming is equivalent to polyhedral projection.[11]
References
^ abEcker, J. G.; Kouada, I. A. (1978). "Finding all efficient extreme points for multiple objective linear programs". Mathematical Programming. 14 (1): 249–261. doi:10.1007/BF01588968. ISSN0025-5610. S2CID42726689.
^ abEcker, J. G.; Hegner, N. S.; Kouada, I. A. (1980). "Generating all maximal efficient faces for multiple objective linear programs". Journal of Optimization Theory and Applications. 30 (3): 353–381. doi:10.1007/BF00935493. ISSN0022-3239. S2CID120455645.
^ abcBenson, Harold P. (1998). "An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem". Journal of Global Optimization. 13 (1): 1–24. doi:10.1023/A:1008215702611. ISSN0925-5001. S2CID45440728.
^Dauer, J.P.; Saleh, O.A. (1990). "Constructing the set of efficient objective values in multiple objective linear programs". European Journal of Operational Research. 46 (3): 358–365. doi:10.1016/0377-2217(90)90011-Y. ISSN0377-2217.
^Löhne, Andreas; Weißing, Benjamin (2016). "Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming". Mathematical Methods of Operations Research. 84 (2): 411–426. arXiv:1507.00228. doi:10.1007/s00186-016-0554-0. ISSN1432-2994. S2CID26137201.