Moufang loop

In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by Ruth Moufang (1935). Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra.

Definition

A Moufang loop is a loop that satisfies the four following equivalent identities for all , , in (the binary operation in is denoted by juxtaposition):

These identities are known as Moufang identities.

Examples

  • Any group is an associative loop and therefore a Moufang loop.
  • The nonzero octonions form a nonassociative Moufang loop under octonion multiplication.
  • The subset of unit norm octonions (forming a 7-sphere in O) is closed under multiplication and therefore forms a Moufang loop.
  • The subset of unit norm integral octonions is a finite Moufang loop of order 240.
  • The basis octonions and their additive inverses form a finite Moufang loop of order 16.
  • The set of invertible split-octonions forms a nonassociative Moufang loop, as does the set of unit norm split-octonions. More generally, the set of invertible elements in any octonion algebra over a field F forms a Moufang loop, as does the subset of unit norm elements.
  • The set of all invertible elements in an alternative ring R forms a Moufang loop called the loop of units in R.
  • For any field F let M(F) denote the Moufang loop of unit norm elements in the (unique) split-octonion algebra over F. Let Z denote the center of M(F). If the characteristic of F is 2 then Z = {e}, otherwise Z = {±e}. The Paige loop over F is the loop M*(F) = M(F)/Z. Paige loops are nonassociative simple Moufang loops. All finite nonassociative simple Moufang loops are Paige loops over finite fields. The smallest Paige loop M*(2) has order 120.
  • A large class of nonassociative Moufang loops can be constructed as follows. Let G be an arbitrary group. Define a new element u not in G and let M(G,2) = G ∪ (G u). The product in M(G,2) is given by the usual product of elements in G together with and
It follows that and . With the above product M(G,2) is a Moufang loop. It is associative if and only if G is abelian.
  • The smallest nonassociative Moufang loop is M(S3, 2) which has order 12.
  • Richard A. Parker constructed a Moufang loop of order 213, which was used by Conway in his construction of the monster group. Parker's loop has a center of order 2 with elements denoted by 1, −1, and the quotient by the center is an elementary abelian group of order 212, identified with the binary Golay code. The loop is then defined up to isomorphism by the equations
    A2 = (−1)|A|/4
    BA = (−1)|AB|/2AB
    A(BC)= (−1)|ABC|(AB)C
where |A| is the number of elements of the code word A, and so on. For more details see Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England.

Properties

Associativity

Moufang loops differ from groups in that they need not be associative. A Moufang loop that is associative is a group. The Moufang identities may be viewed as weaker forms of associativity.

By setting various elements to the identity, the Moufang identities imply

Moufang's theorem states that when three elements x, y, and z in a Moufang loop obey the associative law: (xy)z = x(yz) then they generate an associative subloop; that is, a group. A corollary of this is that all Moufang loops are di-associative (i.e. the subloop generated by any two elements of a Moufang loop is associative and therefore a group). In particular, Moufang loops are power associative, so that powers xn are well-defined. When working with Moufang loops, it is common to drop the parenthesis in expressions with only two distinct elements. For example, the Moufang identities may be written unambiguously as

  1. z(x(zy)) = (zxz)y
  2. ((xz)y)z = x(zyz)
  3. (zx)(yz) = z(xy)z.

Left and right multiplication

The Moufang identities can be written in terms of the left and right multiplication operators on Q. The first two identities state that

while the third identity says

for all in . Here is bimultiplication by . The third Moufang identity is therefore equivalent to the statement that the triple is an autotopy of for all in .

Inverse properties

All Moufang loops have the inverse property, which means that each element x has a two-sided inverse x−1 that satisfies the identities:

for all x and y. It follows that and if and only if .

Moufang loops are universal among inverse property loops; that is, a loop Q is a Moufang loop if and only if every loop isotope of Q has the inverse property. It follows that every loop isotope of a Moufang loop is a Moufang loop.

One can use inverses to rewrite the left and right Moufang identities in a more useful form:

Lagrange property

A finite loop Q is said to have the Lagrange property if the order of every subloop of Q divides the order of Q. Lagrange's theorem in group theory states that every finite group has the Lagrange property. It was an open question for many years whether or not finite Moufang loops had Lagrange property. The question was finally resolved by Alexander Grishkov and Andrei Zavarnitsine, and independently by Stephen Gagola III and Jonathan Hall, in 2003: Every finite Moufang loop does have the Lagrange property. More results for the theory of finite groups have been generalized to Moufang loops by Stephen Gagola III in recent years.

Moufang quasigroups

Any quasigroup satisfying one of the Moufang identities must, in fact, have an identity element and therefore be a Moufang loop. We give a proof here for the third identity:

Let a be any element of Q, and let e be the unique element such that ae = a.
Then for any x in Q, (xa)x = (x(ae))x = (xa)(ex).
Cancelling xa on the left gives x = ex so that e is a left identity element.
Now for any y in Q, ye = (ey)(ee) =(e(ye))e = (ye)e.
Cancelling e on the right gives y = ye, so e is also a right identity element.
Therefore, e is a two-sided identity element.

The proofs for the first two identities are somewhat more difficult (Kunen 1996).

Open problems

Phillips' problem is an open problem in the theory presented by J. D. Phillips at Loops '03 in Prague. It asks whether there exists a finite Moufang loop of odd order with a trivial nucleus.

Recall that the nucleus of a loop (or more generally a quasigroup) is the set of such that , and hold for all in the loop.

See also: Problems in loop theory and quasigroup theory

See also

References

  • V. D. Belousov (2001) [1994], "Moufang loop", Encyclopedia of Mathematics, EMS Press
  • Goodaire, Edgar G.; May, Sean; Raman, Maitreyi (1999). The Moufang loops of order less than 64. Nova Science Publishers. ISBN 0-444-82438-3.
  • Gagola III, Stephen (2011). "How and why Moufang loops behave like groups". Quasigroups and Related Systems. 19: 1–22.
  • Grishkov, Alexander; Zavarnitsine, Andrei (2005). "Lagrange's theorem for Moufang loops". Mathematical Proceedings of the Cambridge Philosophical Society. 139: 41–57. doi:10.1017/S0305004105008388.
  • Kunen, K. (1996). "Moufang quasigroups". Journal of Algebra. 183 (1): 231–4. CiteSeerX 10.1.1.52.5356. doi:10.1006/jabr.1996.0216.
  • Moufang, R. (1935), "Zur Struktur von Alternativkörpern", Math. Ann., 110: 416–430, doi:10.1007/bf01448037
  • Romanowska, Anna B.; Smith, Jonathan D. H. (1999). Post-Modern Algebra. Wiley-Interscience. ISBN 0-471-12738-8.

Read other articles:

Kingdom مملكة كاباون دويلة ناشئة بعد المملكة المورية الرومانية Rump state, exclave 578–708 مملكة كاباون (8) وغيرها من الممالك البربرية في أواخر القرن السادس. نظام الحكم ملكية الديانة مسيحية (الكنيسة الرومانية الكاثوليكية) الملك (غير معروف) 578-708 التاريخ الفترة التاريخية العصور الوسطى إنهيا…

Voce principale: L.R. Vicenza. Associazione del Calcio in VicenzaStagione 1905-1906Sport calcio SquadraVicenza Calcio Allenatore Antonio Libero Scarpa Presidente Antonio Libero Scarpa Terza Categoria1º Torneo FGNIFinalista 1904-1905 1906-1907 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti l'Associazione Del Calcio In Vicenza nelle competizioni ufficiali della stagione 1905-1906. Indice 1 Stagione 2 Organigramma societario 3 Rosa 4 Calciomercato 5 Risult…

Indonesian traditional salad dish KulubanCourseSide dishPlace of originJava, IndonesiaRegion or stateCentral Java, YogyakartaCreated byJavanese cuisineServing temperatureMostly served with main courseMain ingredientsSteamed vegetable salad, shredded coconut dressing Kuluban is a traditional[1] salad of Central Java. Kuluban can be consumed on its own as a salad for vegetarian meals or as a side dish. Kuluban is one of ancient Javanese cuisine, as it was mentioned in inscription dated fro…

Canadian actress Laura MennellMennell, photographed in 2009Born (1980-04-18) 18 April 1980 (age 44)[1]Surrey, British Columbia, Canada[1]OccupationActressYears active1996–presentRelativesAlan Young (cousin) Laura Mennell (/mɛˈnɛl/; born 18 April 1980) is a Canadian actress known for her roles in Thirteen Ghosts, Alphas, Haven, Loudermilk, The Man in the High Castle, Watchmen and Batwoman. In 2011/2012 Mennell co-starred on the Sci-fi television series Alphas. Laura…

Посольство Японии в Российской Федерациияп. 在ロシア日本国大使館 Япония Россия Местоположение Басманный район, Москва Адрес Грохольский пер., 27 Посол Акира Муто Сайт ru.emb-japan.go.jp  Медиафайлы на Викискладе Посольство Японии в Москве (яп. 在ロシア日本国大使館) — дипломатическая …

Astronomical observatory in Hawaii W. M. Keck ObservatoryThe Keck observatory domes atop Mauna KeaAlternative namesKeck telescope Part ofMauna Kea Observatories Location(s)HawaiiCoordinates19°49′35″N 155°28′28″W / 19.8263°N 155.47441°W / 19.8263; -155.47441 Altitude4,145 m (13,599 ft) First lightNovember 24, 1990 (1990-11-24), October 23, 1996 (1996-10-23)Telescope styleastronomical observatoryreflect…

British Army general Sir James Edward EdmondsNickname(s)ArchimedesBorn25 December 1861London, EnglandDied2 August 1956(1956-08-02) (aged 94)Sherborne, EnglandAllegiance United KingdomService/branchBritish ArmyRankBrigadier-GeneralCommands heldSecret Service Bureau Chief of Staff, 4th Division (1914) Historical Section, Committee of Imperial DefenceBattles/warsSecond Boer WarRusso-Japanese WarFirst World WarAwardsKnight BachelorCompanion of the Order of the BathCompanion of the Order of…

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Ни…

Charlie Jones Nazionalità Stati Uniti GenereHeavy metalHard rockRock gotico Periodo di attività musicale1983 – in attività Strumentobatteria, chitarra, tastiera elettronica, voce Gruppi attualiCold Chisel Gruppi precedentiThe Cult, The Dead Daisies, Divinyls Modifica dati su Wikidata · Manuale Charlie Drayton (New York, 9 maggio 1965) è un batterista, polistrumentista e compositore statunitense, noto per essere stato membro della band The Cult, e per essere il…

2020年夏季奥林匹克运动会波兰代表團波兰国旗IOC編碼POLNOC波蘭奧林匹克委員會網站olimpijski.pl(英文)(波兰文)2020年夏季奥林匹克运动会(東京)2021年7月23日至8月8日(受2019冠状病毒病疫情影响推迟,但仍保留原定名称)運動員206參賽項目24个大项旗手开幕式:帕维尔·科热尼奥夫斯基(游泳)和马娅·沃什乔夫斯卡(自行车)[1]闭幕式:卡罗利娜·纳亚(皮划艇)[2…

Delineasi daerah aliran sungai adalah proses pemetaan dan penentuan batas wilayah atau area yang mengalirkan air hujan atau sungai ke satu titik tertentu dalam suatu sungai atau sistem sungai. DAS adalah unit geografis yang mencakup seluruh daerah yang berfungsi sebagai saluran alami bagi air hujan yang jatuh di dalamnya menuju sungai atau saluran air utama yang lebih besar.[1][2] Kegunaan delineasi DAS Kegunaan dari delineasi DAS adalah sebagai berikut:[3][4] Pen…

  关于与「內閣總理大臣」標題相近或相同的条目页,請見「內閣總理大臣 (消歧義)」。 日本國內閣總理大臣內閣總理大臣紋章現任岸田文雄自2021年10月4日在任尊称總理、總理大臣、首相、阁下官邸總理大臣官邸提名者國會全體議員選出任命者天皇任期四年,無連任限制[註 1]設立法源日本國憲法先前职位太政大臣(太政官)首任伊藤博文设立1885年12月22日,​…

Galaxy in the constellation Hercules NGC 6158SDSS image of NGC 6158.Observation data (J2000 epoch)ConstellationHerculesRight ascension16h 27m 40.9s[1]Declination39° 22′ 59″[1]Redshift0.029954[1]Heliocentric radial velocity8980 km/s[1]Distance123 Mpc (401 Mly)[1]Group or clusterAbell 2199Apparent magnitude (V)14.68[1]CharacteristicsTypeE?[1]Size~162,000 ly (49.6 kpc)[1] (estimated)&…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2016) البطولة النسخة الأولى النسخة الأخيرة الأكثر فوزاً بطولات رسمية الدوري الممتاز 1961 مستمر نادي القادسية (17 مرة)…

French academic (born 1952) You can help expand this article with text translated from the corresponding article in French. (May 2019) Click [show] for important translation instructions. View a machine-translated version of the French article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text in…

American intercollegiate baseball squad Mississippi State Bulldogs baseball 2024 Mississippi State Bulldogs baseball teamFounded1885Overall record2,812–1,656–29UniversityMississippi State UniversityAthletic directorZac SelmonHead coachChris Lemonis (6th season)ConferenceSECWest DivisionLocationMississippi State, MississippiHome stadiumDudy Noble Field (Capacity: 15,500)NicknameBulldogsColorsMaroon and white[1]   NCAA Tournament champions2021College World Seri…

Overview of and topical guide to Vermont See also: Index of Vermont-related articles The Flag of the State of VermontThe Great Seal of the State of Vermont The location of the state of Vermont in the United States of America Vermont The following outline is provided as an overview of and topical guide to the U.S. state of Vermont: Vermont – state in the New England region of the northeastern United States. Vermont is the leading producer of maple syrup in the United States. The state capit…

WWE Hall of Fame induction ceremony WWE Hall of Fame (2009)The WWE Hall of Fame Class of 2009 and their inductorsPromotionWWEDateApril 4, 2009CityHouston, Texas[1]VenueToyota CenterWWE Hall of Fame chronology ← Previous2008 Next →2010 WWE Hall of Fame (2009) was the event which featured the introduction of the 10th class to the WWE Hall of Fame. The event was produced by World Wrestling Entertainment (WWE) on April 4, 2009, from the Toyota Center in Houston, Texas. The even…

Disambiguazione – West Bank rimanda qui. Se stai cercando il videogioco, vedi Bank Panic. CisgiordaniaCisgiordania - Localizzazione Territorio a status contesoMotivo del contenziosoarea rivendicata interamente dallo Stato di Palestina come proprio territorio Situazione de factoarea sottoposta a controllo misto da parte di Israele e dello Stato di Palestina Posizione dell'ONUriconoscimento di territorio occupato palestinese Dichiarazione d'indipendenza1988 (dichiarata), 1994 (parziale) …

Türkiye 1.Lig 1986-1987 Competizione Türkiye 1.Lig Sport Calcio Edizione 29ª Organizzatore TFF Luogo  Turchia Partecipanti 19 Formula Girone unico Sito web tff.org Risultati Vincitore  Galatasaray(7º titolo) Retrocessioni  Antalyaspor Diyarbakırspor Statistiche Miglior marcatore Tanju Çolak (25) Incontri disputati 324 Gol segnati 776 (2,4 per incontro) Cronologia della competizione 1985-86 1987-88 Manuale L'edizione 1986-1987 della Türkiye 1.Lig vide la vitto…