The midpoint polygon of a triangle is called the medial triangle. It shares the same centroid and medians with the original triangle. The perimeter of the medial triangle equals the semiperimeter of the original triangle, and the area is one quarter of the area of the original triangle. This can be proven by the midpoint theorem of triangles and Heron's formula. The orthocenter of the medial triangle coincides with the circumcenter of the original triangle.
Quadrilateral
The midpoint polygon of a quadrilateral is a parallelogram called its Varignon parallelogram. If the quadrilateral is simple, the area of the parallelogram is one half the area of the original quadrilateral. The perimeter of the parallelogram equals the sum of the diagonals of the original quadrilateral.
Gardner, Richard J. (2006), Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58 (2nd ed.), Cambridge University Press
Gardner, Richard J.; Gritzmann, Peter (1999), "Uniqueness and Complexity in Discrete Tomography", in Herman, Gabor T.; Kuba, Attila (eds.), Discrete tomography: Foundations, Algorithms, and Applications, Springer, pp. 85–114
Croft, Hallard T.; Falconer, K. J.; Guy, Richard K. (1991), "B25. Sequences of polygons and polyhedra", Unsolved Problems in Geometry, Springer, pp. 76–78
Gau, Y. David; Tartre, Lindsay A. (April 1994), "The Sidesplitting Story of the Midpoint Polygon", Mathematics Teacher, 87 (4): 249–256, doi:10.5951/MT.87.4.0249