Exposures of deep crust exhumed in association with largely amagmatic extension
Metamorphic core complexes are exposed areas of deep crust brought to the surface by crustal extension (stretching).[1] They form, and are exhumed, through relatively fast[citation needed] transport of middle and lower continental crust to the Earth's surface[2] in the form of uplifting welts of hot rock and magma.[1] The resulting doming causes the overlying rock to gravitationally collapse, sliding down and usually away from the uplift along low-angle detachment faults.[1] Brittle, faulted cover rock above the detachment surface lies in direct contact with the ductile middle-lower crust below.[3]
They range from several miles to over 50 miles across, and usually exhibit several miles of vertical uplift.[1] They are common in areas of localized crustal extension in otherwise thickened fold-thrust belts.[1][clarification needed] The origin of the low angles of the detachment faults were a subject of debate as of 2022.[3]
are characterized by a generally heterogeneous, older metamorphic-plutonic basement terrane overprinted by low-dipping lineated and foliated mylonitic and gneissic fabrics. An unmetamorphosed cover terrane is typically attenuated and sliced by numerous subhorizontal younger-on-older faults. Between the basement and cover terranes is a decollement and/or steep metamorphic gradient with much brecciation and kinematic structural relationships indicating sliding or detachment.
The decollement is also called a detachment fault.
Metamorphic core complexes form as the result of major continental extension, when the middle and lower continental crust is dragged out from beneath the fracturing, extending upper crust. Movement zones capable of producing such effects evolve in space as well as with time. Deforming rocks in the footwall are uplifted through a progression of different metamorphic and deformational environments, producing a characteristic sequence of (overprinted) meso- and microstructures.
A feature at the center of Artemis Corona on Venus has been suggested as a metamorphic core complex.[10] This could be the largest metamorphic core complex in the solar system.