Lauricella's theorem

In the theory of orthogonal functions, Lauricella's theorem provides a condition for checking the closure of a set of orthogonal functions, namely:

Theorem – A necessary and sufficient condition that a normal orthogonal set be closed is that the formal series for each function of a known closed normal orthogonal set in terms of converge in the mean to that function.

The theorem was proved by Giuseppe Lauricella in 1912.

References

  • G. Lauricella: Sulla chiusura dei sistemi di funzioni ortogonali, Rendiconti dei Lincei, Series 5, Vol. 21 (1912), pp. 675–85.

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia