Killing–Hopf theorem

In geometry, the Killing–Hopf theorem states that complete connected Riemannian manifolds of constant curvature are isometric to a quotient of a sphere, Euclidean space, or hyperbolic space by a group acting freely and properly discontinuously.[1] These manifolds are called space forms. The Killing–Hopf theorem was proved by Killing (1891) and Hopf (1926).

References

  1. ^ Lee, John M. (2018). Introduction to Riemannian Manifolds. New York: Springer-Verlag. p. 348. ISBN 978-3-319-91754-2.


 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia