Kekulene is a polycyclic aromatic hydrocarbon which consists of 12 fused benzene rings arranged in a circle. It is therefore classified as a [12]-circulene with the chemical formula C48H24. It was first synthesized in 1978,[2] and was named in honor of August Kekulé, the discoverer of the structure of the benzene molecule.
Geometry and electronic structure
The nature of the π bonding within the molecule was long debated, as several distinctly different arrangements were possible. The two most significant proposals are the "Clar" configuration, consisting of six benzene-like (aromatic 6 π-electron) rings connected by bridging bonds and vinyl groups in non-aromatic rings, and the "Kekulé" configuration, consisting of two concentric aromatic rings (18 π-electron inner, 30 π-electron outer) linked by radial single bonds.[3][4][5][6][7][8][9]
Proposed electronic configurations
"Kekulé" configuration: Two concentric aromatic rings
"Clar" configuration: Benzene rings alternating with non-aromatic linkers
The synthesis of the compound, first reported in 1978,[5] allowed experimental determination of the electronic structure. In the late 1970s, 1H-NMR provided evidence of benzene rings[5] and X-ray analysis determined that the structure had had alternating aromatic and non-aromatic rings,[3] both consistent with the Clar configuration. In 2019, the configuration was determined to be one consisting of benzene-like rings alternating with non-aromatic linkages, by using single molecule atomic force microscopy to measure the carbon–carbon bond-lengths and bond orders.[10] This configuration is in keeping with Clar's rule, as it has the largest number of disjoint aromatic π sextets.
Though the whole structure is essentially planar, it only has three-fold symmetry rather than six-fold. The carbon–hydrogen bonds in the center of the ring have a slight alternating tilt out of the plane to avoid steric hindrance among the hydrogen atoms.[10]
References
^ abStaab, Heinz A.; Diederich, François; Krieger, Claus; Schweitzer, Dieter (1983). "Cycloarenes, a New Class of Aromatic Compounds, II. Molecular Structure and Spectroscopic Properties of Kekulene". Chemische Berichte. 116 (10): 3504–3512. doi:10.1002/cber.19831161022.
^Staab, Heinz A.; Diederich, François (October 1983). "Cycloarenes, a New Class of Aromatic Compounds, I. Synthesis of Kekulene". Chemische Berichte. 116 (10): 3487–3503. doi:10.1002/cber.19831161021.
^Aihara, Junichi (January 1992). "Is superaromaticity a fact or an artifact? The kekulene problem". Journal of the American Chemical Society. 114 (3): 865–868. doi:10.1021/ja00029a009.
^ abcDiederich, François; Staab, Heinz A. (May 1978). "Benzenoidversus Annulenoid Aromaticity: Synthesis and Properties of Kekulene". Angewandte Chemie International Edition in English. 17 (5): 372–374. doi:10.1002/anie.197803721.
^Jiao, Haijun; Schleyer, Paul von Ragué (1 November 1996). "Is Kekulene Really Superaromatic?". Angewandte Chemie International Edition in English. 35 (20): 2383–2386. doi:10.1002/anie.199623831.
^Staab, Heinz A.; Diederich, FrançOis; Krieger, Claus; Schweitzer, Dieter (October 1983). "Cycloarenes, a New Class of Aromatic Compounds, II. Molecular Structure and Spectroscopic Properties of Kekulene". Chemische Berichte. 116 (10): 3504–3512. doi:10.1002/cber.19831161022.
^Zhou, Zhongxiang (February 1995). "Are kekulene, coronene, and corannulene tetraanion superaromatic? Theoretical examination using hardness indices". Journal of Physical Organic Chemistry. 8 (2): 103–107. doi:10.1002/poc.610080209.