Number of Josephson junctions on a superconducting integrated circuit chip
The Josephson junction count is the number of Josephson junctions on a superconductingintegrated circuit chip. Josephson junctions are active circuit elements in superconducting circuits. The Josephson junction count is a measure of circuit or device complexity, similar to the transistor count used for semiconductor integrated circuits.
Examples of circuits using Josephson junctions include digital circuits based on SFQ logic (e.g., RSFQ, RQL, adiabatic quantum flux parametron), superconducting quantum computing circuits, superconducting analog circuits, etc.
Integrated circuits
The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.
Maker column may include organizations that designed and fabricated the chip.
Process column information: minimum linewidth, Josephson junction critical current density, superconducting layer number and materials.
Conversions for units of critical current density: 1 MA/m2 = 1 μA/μm2 = 100 A/cm2.
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org.
Graphs are unavailable due to technical issues. Updates on reimplementing the Graph extension, which will be known as the Chart extension, can be found on Phabricator and on MediaWiki.org.
Memory
Memory is an electronic data storage device, often used as computer memory, on a single integrated circuit chip. The superconducting integrated circuits listed here must have been fabricated and tested, but are not required to be commercially available. Chip area includes the full extent of the chip.
^Tanaka M, Yamanashi Y, Irie N, Park H-J, Iwasaki S, Takagi K, Taketomi K, Fujimaki A, Yoshikawa N, Terai H, Yorozu S (2007). "Design and implementation of a pipelined 8 bit-serial single-flux-quantum microprocessor with cache memories". Supercond. Sci. Technol. 20 (11): S305 –S309. Bibcode:2007SuScT..20S.305T. doi:10.1088/0953-2048/20/11/S01. S2CID121079166.
^Johnson MW, Bunyk P, Maibaum F, Tolkacheva E, Berkley AJ, Chapple EM, Harris R, Johansson J, Lanting T, Perminov I, Ladizinsky E, Oh T, Rose G (2010). "A scalable control system for a superconducting adiabatic quantum optimization processor". Supercond. Sci. Technol. 23 (6): 065004. arXiv:0907.3757. Bibcode:2010SuScT..23f5004J. doi:10.1088/0953-2048/23/6/065004. S2CID16656122.
^Bunyk PI, Hoskinson EM, Johnson MW, Tolkacheva E, Altomare F, Berkley AJ, Harris R, Hilton JP, Lanting T, Przybysz AJ, Whittaker J (2014). "Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor". IEEE Trans. Appl. Supercond. 24 (4): 1700110. arXiv:1401.5504. Bibcode:2014ITAS...2418294B. doi:10.1109/TASC.2014.2318294. S2CID44902153.
^Dorojevets M, Ayala CL, Yoshikawa N, Fujimaki A (2010). "16-Bit Wave-Pipelined Sparse-Tree RSFQ Adder". IEEE Trans. Appl. Supercond. 23 (3): 1700605. doi:10.1109/TASC.2012.2233846. S2CID24955156.