Janthinobacterium lividum

Janthinobacterium lividum
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
J. lividum
Binomial name
Janthinobacterium lividum
(Eisenberg 1891) De Ley et al. 1978 (Approved Lists 1980)
Type strain
ATCC 12473
CCUG 2344
CIP 103349
DSM 1522
HAMBI 1919
JCM 9043
LMG 2892
NCTC 9796
VKM B-1223
Synonyms
  • Bacillus lividus Eisenberg 1891
  • Bacillus violaceus berolinensis Kruse 1896
  • Bacterium lividus [sic] (Eisenberg 1891) Chester 1897
  • Bacillus berolinensis Chester 1901
  • Chromobacterium lividum (Eisenberg 1891) Bergey et al. 1923
  • Chromobacterium violaceum Ford 1927
  • Chromobacterium amethystinum Breed et al. 1957
  • Chromobacterium violaceum Leifson 1956
  • Pseudomonas mephitica Claydon and Hammer 1939[1]

Janthinobacterium lividum is an aerobic, Gram-negative, soil-dwelling bacterium that has a distinctive dark-violet (almost black) color, due to a compound called violacein, which is produced when glycerol is metabolized as a carbon source.[2] Violacein has antibacterial, antiviral, and antifungal properties. Its antifungal properties are of particular interest, since J. lividum is found on the skin of certain amphibians, including the red-backed salamander (Plethodon cinereus), where it prevents infection by the devastating chytrid fungus (Batrachochytrium dendrobatidis).[3]

Etymology

The genus name, Janthinobacterium, comes from Latin janthinus, which means "violet" or "violet-blue" + bacterium, which means rod or staff.[4] The species name is also from Latin, lividum, which means "of a blue or leaden color".[5]

Antifungal properties

This bacterium produces antifungal compounds, such as indole-3-carboxaldehyde and violacein.[6]

Resistance to B. dendrobatidis

J. lividum inhibits the toxic effect and growth of the fungal genus Batrachochytrium. This fungus causes a disease known as chytridiomycosis in amphibians, and is contributing to the massive declines of amphibians around the world, so understanding the uses of these bacteria has been of major interest.

A study conducted in 2009 explored the effects of Bd and the use of J. lividium in the lab for survival. The three experimental treatments were: frogs infected with Bd, frogs given the bacterium J. lividium, and frogs with the given bacterium and then exposed to Bd. Nearly all of the frogs exposed to Bd alone experienced mortality, while none of the other treatments had any deaths. This effectively introduced the use of J. lividium as a possible method for Bd prevention in the lab setting.[7]

Textile dyeing

The pigment produced by J. lividum is also being used to colour textile. The biodegradable pigment could be an alternative to synthetic textile dyes that contain harmful chemicals and heavy metals.[8][9]

References

  1. ^ Kämpfer, P.; Falsen, E.; Busse, H. J. (2008). "Reclassification of Pseudomonas mephitica Claydon and Hammer 1939 as a later heterotypic synonym of Janthinobacterium lividum (Eisenberg 1891) De Ley et al. 1978". Int. J. Syst. Evol. Microbiol. 58 (Pt 1): 136–138. doi:10.1099/ijs.0.65450-0. PMID 18175698.
  2. ^ Pantanella, F; Berlutti, F; Passariello, C; Sarli, S; Morea, C; Schippa, S (2007). "Violacein and biofilm production in Janthinobacterium lividum". J Appl Microbiol. 102 (4): 992–9. doi:10.1111/j.1365-2672.2006.03155.x. PMID 17381742.
  3. ^ "Small Things Considered: What You Didn't Know About Janthinobacterium". Archived from the original on 7 July 2018. Retrieved 12 June 2012.
  4. ^ "Archived copy". Archived from the original on 7 February 2021. Retrieved 12 June 2012.{{cite web}}: CS1 maint: archived copy as title (link)
  5. ^ Ibid.
  6. ^ Brucker, Robert M.; Harris, Reid N.; Schwantes, Christian R.; Gallaher, Thomas N.; Flaherty, Devon C.; Lam, Brianna A.; Minbiole, Kevin P. C. (1 November 2008). "Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus". Journal of Chemical Ecology. 34 (11): 1422–1429. Bibcode:2008JCEco..34.1422B. doi:10.1007/s10886-008-9555-7. ISSN 0098-0331. PMID 18949519. S2CID 9712168.
  7. ^ Harris, Reid N.; Brucker, Robert M.; Walke, Jenifer B.; Becker, Matthew H.; Schwantes, Christian R.; Flaherty, Devon C.; Lam, Brianna A.; Woodhams, Douglas C.; Briggs, Cheryl J. (1 July 2009). "Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus". The ISME Journal. 3 (7): 818–824. Bibcode:2009ISMEJ...3..818H. doi:10.1038/ismej.2009.27. ISSN 1751-7370. PMID 19322245.
  8. ^ "LIVING COLOUR – by Laura Luchtman & Ilfa Siebenhaar". www.livingcolour.eu. Archived from the original on 8 December 2018. Retrieved 19 March 2018.
  9. ^ Kato, Hiroshi; Kojima, Atsushi; Hayasaka, Shoji; Hata, Tamako; Yasui, Hiroe; Tsukamoto, Takanori; Shirata, Akira (April 2000). "Isolation of Bacteria Producing Bluish-Purple Pigment and Use for Dyeing". Japan Agricultural Research Quarterly. 34 (2): 131–140. Archived from the original on 20 March 2018. Retrieved 19 March 2018.

 

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia