Meyer-ter-Vehn's work involved examining the physical principles of inertial fusion with lasers and heavy ion beams.[2][3] In the 2000s, he dealt with relativistic laser-plasma interaction (where, for example, due to the relativistic increase in mass, new effects occur such as induced transparency and self-focusing with channel formation)[4][5] and with the formation of plasma blocks by ultra-short terawatt laser pulses for laser fusion (fast ignition).[6][7] He also further developed the concept of the wakefield accelerators for generating extremely high electric fields by laser-induced charge separation in plasma by John M. Dawson (a possible accelerator concept).[8]
Until the end of the 1970s, he mainly dealt with theoretical nuclear physics.
He was married to Helga Meyer-ter-Vehn (died 2011) and has two sons, Tobias Meyer-ter-Vehn and Moritz Meyer-ter-Vehn, and four grand-daughters, Rebekka, Lili, Clara, and Sophie.
^Bin, J. H.; Ma, W. J.; Wang, H. Y.; Streeter, M. J. V.; Kreuzer, C.; Kiefer, D.; Yeung, M.; Cousens, S.; Foster, P. S.; Dromey, B.; Yan, X. Q. (3 August 2015). "Ion Acceleration Using Relativistic Pulse Shaping in Near-Critical-Density Plasmas". Physical Review Letters. 115 (6): 064801. Bibcode:2015PhRvL.115f4801B. doi:10.1103/PhysRevLett.115.064801. PMID26296119.
^Kaluza, M.; Schreiber, J.; Santala, M. I. K.; Tsakiris, G. D.; Eidmann, K.; Meyer-ter-Vehn, J.; Witte, K. J. (2004). "Influence of the Laser Prepulse on Proton Acceleration in Thin-Foil Experiments". Physical Review Letters. 93 (4): 045003. Bibcode:2004PhRvL..93d5003K. doi:10.1103/PhysRevLett.93.045003. PMID15323768.