Hygromycin B was originally developed in the 1950s for use with animals and is still added into swine and chicken feed as an anthelmintic or anti-worming agent (product name: Hygromix). Hygromycin B is produced by Streptomyces hygroscopicus, a bacterium isolated in 1953 from a soil sample. Resistance genes were discovered in the early 1980s.[2][3]
Mechanism of action
Hygromycin B, along with aminoglycosides, inhibits protein synthesis by strengthening the interaction of tRNA binding in the ribosomal A-site. Hygromycin B also prevents mRNA and tRNA translocation by an unknown mechanism.[4]
Use in research
In the laboratory it is used for the selection and maintenance of prokaryotic and eukaryotic cells that contain the hygromycin resistance gene. The resistance gene is a kinase that inactivates hygromycin B through phosphorylation.[5] Since the discovery of hygromycin-resistance genes, hygromycin B has become a standard selection antibiotic in gene transfer experiments in many prokaryotic and eukaryotic cells. Based on impurity monitor method,[6] four different kinds of impurities are discovered in commercial hygromycin B from different suppliers and toxicities of different impurities to the cell lines are described in the following external links.[citation needed]
^Pittenger RC, Wolfe RN, Hoehn MM, Marks PN, Daily WA, McGUIRE JM (December 1953). "Hygromycin. I. Preliminary studies on the production and biologic activity of a new antibiotic". Antibiotics & Chemotherapy. 3 (12): 1268–1278. PMID24542808.
^Gritz L, Davies J (November 1983). "Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae". Gene. 25 (2–3): 179–188. doi:10.1016/0378-1119(83)90223-8. PMID6319235.
^Kauffman JS (2009). "Analytical Strategies for Monitoring Residual Impurities Best methods to monitor product-related impurities throughout the production process". BioPharm International. 23: 1–3.